Important Note

Please turn desktop mode or rotate your mobile screen for better view

Exercise 4.3

1. Find area of the triangle with vertices at the point given in each of the following:

(i) (1,0), (6,0), (4,3)

Solun:- We know the area of the triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>1</mn><mfenced><mrow><mn>0</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mn>0</mn><mfenced><mrow><mn>6</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><mn>18</mn><mo>-</mo><mn>0</mn></mrow></mfenced></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mo>&#xA0;</mo><mi>square</mi><mo>&#xA0;</mo><mi>units</mi></math>

(ii) (2,7), (1,1), (10,8)

Solun:- We know the area of the triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>10</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>2</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>8</mn></mrow></mfenced><mo>-</mo><mn>7</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>10</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><mn>8</mn><mo>-</mo><mn>10</mn></mrow></mfenced></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>47</mn><mn>2</mn></mfrac><mo>&#xA0;</mo><mi>square</mi><mo>&#xA0;</mo><mi>units</mi></math>

(iii) (-2,-3), (3,2), (-1,-8)

Solun:- We know the area of the triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mo>+</mo><mn>8</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><mo>-</mo><mn>24</mn><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>30</mn></mrow><mn>2</mn></mfrac><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>15</mn><mspace linebreak="newline"/></math>

But We know the area of the triangle is always positive.

Hence Area of Triangle is 15 square units.

2. Show that points

A(a,b+c), B(b,c+a), C(c,a+b) are collinear.

Solun:- We know that if the area of the triangle is zero, then points are collinear.

Area of the triangle ABC is:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mi mathvariant="normal">a</mi><mfenced open="{" close="}"><mrow><mfenced><mrow><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow></mfenced></mrow></mfenced><mo>-</mo><mfenced><mrow><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mfenced open="{" close="}"><mrow><mi mathvariant="normal">b</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced open="{" close="}"><mrow><mfenced open="{" close="}"><mrow><mi mathvariant="normal">b</mi><mfenced><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow></mfenced></mrow></mfenced><mo>-</mo><mfenced open="{" close="}"><mrow><mi mathvariant="normal">c</mi><mfenced><mrow><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mrow></mfenced></mrow></mfenced></mrow></mfenced></mrow></mfenced><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mfenced open="{" close="}"><mrow><mi mathvariant="normal">a</mi><mfenced><mrow><mi mathvariant="normal">c</mi><mo>-</mo><mi mathvariant="normal">b</mi></mrow></mfenced></mrow></mfenced><mo>-</mo><mfenced open="{" close="}"><mrow><mfenced><mrow><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mfenced><mrow><mi mathvariant="normal">b</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mfenced open="{" close="}"><mrow><mn>1</mn><mfenced><mrow><mi>ab</mi><mo>+</mo><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mo>-</mo><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup><mo>-</mo><mi>ac</mi></mrow></mfenced></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mi>ac</mi><mo>-</mo><mi>ab</mi><mo>-</mo><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mo>+</mo><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup><mo>+</mo><mi>ab</mi><mo>+</mo><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mo>-</mo><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup><mo>-</mo><mi>ac</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mn>0</mn></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>

So, the given points are collinear.

3. Find values of k if area of triangle is 4 sq. units and vertices are

(i) (k,0), (4,0), (0,2)

Solun:- We know the area of the triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">k</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced></math>

Given area of the triangle is 4 sq. units.

⇒ 4 = 1/2 [k(0-2)-0(4-0)+1(8-0)]

⇒ 8 = -2k+8

⇒ k=0

Vertices are (0,0), (4,0), (0,2)

and area = -4

⇒ -4 = 1/2 [k(0-2)-0(4-0)+1(8-0)]

⇒ -8 = -2k+8

⇒ k=8

Vertices are (8,0), (4,0), (0,2)

(ii) (-2,0), (0,4), (0,k)

Solun:- We know area of triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>k</mi></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced></math>

Given area of the triangle is 4 sq. units.

⇒ 4 = 1/2 [-2(4-k)-0(0-0)+1(0-0)]

⇒ 8 = -8+2k

⇒ k=8

Vertices are (-2,0), (0,4), (0,8)

and area = -4

⇒ -4 = 1/2 [k(0-2)-0(4-0)+1(8-0)]

⇒ -8 = -8+2k

⇒ k=0

Vertices are (-2,0), (0,4), (0,0)

4. (i) Find equation of line joining (1,2) and (3,6) using determinants.

Solun:- Let P(x,y) be a point that lies on the line we know that if three points are collinear then the area of the triangle is zero.

Points are: P(x,y), B(1,2), C(3,6)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi>y</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced></math>

For Collinear points the area of the triangle is zero.

⇒ 0 = 1/2 [x(2-6)-y(1-3)+1(0)]

⇒ 0 = -4x+2y

⇒ 4x = 2y

⇒ y = 2x

(ii) Find equation of line joining (3,1) and (9,3) using determinants.

Solun:- Let P(x,y) be a point that lies on the line we know that if three points are collinear then the area of the triangle is zero. Points are: P(x,y), B(3,1), C(9,3)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi>y</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced></math>

For Collinear points the area of the triangle is zero.

⇒ 0 = x(1-3)-y(3-9)+1(9-9)

⇒ 0 = -2x+6y

⇒ 0 = -x+3y

⇒ x-3y = 0

5. If the area of the triangle is 35 sq. units with vertices (2,-6), (5,4), (k,4). Then k is

(A) 12     (B) -2     (C) -12, -2     (D) 12,-2

Solun:- We know area of triangle is:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>1</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>1</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>2</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>2</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">x</mi><mn>3</mn></msub></mtd><mtd><msub><mi mathvariant="normal">y</mi><mn>3</mn></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>k</mi></mtd><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced></math>

Given area of the triangle is 35 sq. units.

⇒ 35 = 1/2 [2(4-4)-(-6)(5-k)+1(20-4k)]

⇒ 70 = 30-6k+20-4k

⇒ -10k = 20

⇒ k=-2

Vertices are (2,-6), (5,4), (-2,4).

Given area of the triangle is -35 sq. units.

⇒ -35 = 1/2 [2(4-4)-(-6)(5-k)+1(20-4k)]

⇒ -70 = 30-6k+20-4k

⇒ -10k = -120

⇒ k=12

Vertices are (2,-6), (5,4), (12,4).

Answer is…………D.


See also:- Exercise 4.1

If you have any queries, you can ask me in the comment section And you can follow/subscribe me for the latest updates on your e-mails For subscribing me follow these instructions:- 1. Fill your E-mail address 2. Submit Recaptcha 3. Go to your email and then click on the verify link Then you get all update on your email Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post