Definition and Formulas
Introduction: - Inverse of a function f, denoted by f -1, exists if f is one-one and onto. There are many functions which are not one-one, onto or both and hence we can not talk of their inverses. Trigonometric functions are not one-one and onto over their natural domains and ranges and hence their inverses do not exist. In this chapter, we shall study the restrictions on domains and ranges of trigonometric functions that ensure the existence of their inverses and observe their behavior through graphical representations.
if f: X→Y such that f(x) = y is one-one and onto
then a unique function g: Y→X such that g(y) = x, where x ∈ X and y ∈ Y.
Domain and Range: - Simply domain is the x values and Range is a subset of co-domain or values of y that x takes.
Graphs of Inverse trigonometry function: -
1. sin-1x
2. cos-1x
3. tan-1x
4. cot-1x
5. sec-1x and cosec-1x
NOTE:-
1. sin-1x is not equal to (sin x)-1.
Proof: - (sin x)-1 = 1/sinx = cosec x
But sin-1x is an inverse function of sin x.
Principal Value:- The value of an inverse trigonometric function which lies in the range of inverse trigonometry function called the principal value of the inverse functions.
Properties of Inverse trigonometry function:-
1.(i) sin-1(1/x) = cosec-1x , x³1 or x∈ – 1
(ii)cos-1 (1/x) = sec-1x , x³1 or x ∈ – 1
(iii)tan-1 (1/x) = cot-1x , x>0
2.(i) sin-1 (-x) = - sin-1x
(ii)tan-1 (-x) = -tan-1x
(iii)cosec-1 (-x) = -cosec-1x
3.(i) cos-1 (-x) = Ï€ - cos-1x , x ∈ [-1,1]
(ii)sec-1 (-x) = Ï€ - sec-1x , |x| ≥ 1
(iii)cot-1 (-x) = Ï€ - cot-1x , x ∈ R
4.(i) sin-1x + cos-1x = Ï€/2 , x ∈ [-1,1]
(ii) tan-1x + cot-1x = Ï€/2 , x ∈ R
(iii)sec-1x + cosec-1x = Ï€/2 , |x| ≥ 1
5.(i) tan-1x + tan-1y = tan-1 [(x + y) / 1-xy] , xy<1
(ii) tan-1x - tan-1y = tan-1 [(x - y) / 1+xy] , xy>-1
6.(i) cot-1x + cot-1y = cot-1[(xy-1) / x+y]
(ii) cot-1x - cot-1y = cot-1[(xy+1) / y-x]
7.(i) 2tan-1x = sin-1 (2x/1+x2) , |x|≤1
(ii) 2tan-1x = cos-1 [(1-x2)/1+x2] , x≥0
(iii) 2tan-1x = tan-1 (2x/1-x2) , -1< x < 1
8.(i) sin(sin-1x) = x , x ∈ [-1,1] and
sin-1(sin x) = x , x ∈ [-Ï€/2 , Ï€/2]
(ii) cos(cos-1x) = x , x ∈ [-1,1] and
cos-1(cos x) = x , x ∈ [0 , Ï€]
(iii) tan(tan-1x) = x , x ∈ R and
tan-1(tan x) = x , x ∈ (-Ï€/2 , Ï€/2)
(iv) cot(cot-1x) = x , x ∈ R and
cot-1(cot x) = x , x ∈ (0 , Ï€)
(v) sec(sec-1x) = x , x ∈ R- (-1,1) and
sec-1(sec x) = x , x ∈ [0 , Ï€] - {Ï€/2}
(vi) cosec(cosec-1x) = x , x ∈ R- (-1,1) and
cosec-1(cosec x) = x ,x ∈ [-Ï€/2 , Ï€/2]-{0}
9.(i) sin-1x + sin-1y = sin-1[x√1-y2 + y√1-x2]
(ii) sin-1x - sin-1 y = sin-1[x√1-y2 - y√1-x2]
10.(i) cos-1x + cos-1y = cos-1[xy- √1-x2 √1-y2]
(ii) cos-1x - cos-1y = cos-1[xy+ √1-x2 √1-y2]
Properties of Inverse trigonometry function(with proof):-
1. (i) sin-1 (1/x) = cosec-1x , x³1 or x∈– 1
Proof:- Let y = cosec-1x ……(1)
⇒ cosec y = x
⇒ x = cosec y
⇒ x = 1/sin y
(Here we can simply do cross multiply)
⇒ sin y = 1/x
⇒ y = sin-1 (1/x)
From Eq. 1:- Put the value of y
⇒ sin-1 (1/x) = cosec-1x (Hence Proved….)
(ii)cos-1 (1/x) = sec-1x , x³1 or x∈– 1
Proof:- Let y = sec-1x ……(1)
⇒ sec y = x
⇒ x = sec y
⇒ x = 1/cos y
(Here we can simply do cross multiply)
⇒ cos y = 1/x
⇒ y = cos-1 (1/x)
From Eq. 1:- Put the value of y
⇒ cos-1 (1/x) = sec-1x (Hence Proved….)
(iii) tan-1 (1/x) = cot-1x , x>0
Proof:- Let y = cot-1x ………(1)
⇒ cot y = x
⇒ x = cot y
⇒ x = 1/tan y
(Here we can simply do cross multiply)
⇒ tan y = 1/x
⇒ y = tan-1 (1/x)
From Eq. 1:- Put the value of y
⇒ tan-1 (1/x) = cot-1x (Hence Proved….)
2. (i) sin-1 (-x) = - sin-1x , x ∈ [-1,1]
Proof:- Let y = sin-1 (-x) ………(1)
⇒ sin y = -x
⇒ x = -sin y
We know -sin y = sin (-y)
⇒ x = sin (-y)
⇒ sin-1x = -y
⇒ y = - sin-1x
From Eq. 1:- Put the value of y
⇒ sin-1 (-x) = - sin-1x (Hence Proved….)
(ii) tan-1 (-x) = -tan-1x , x ∈ R
Proof:- Let y = tan-1 (-x) ……(1)
⇒ tan y = -x
⇒ x = -tan y
We know -tan y = tan (-y)
⇒ x = tan (-y)
⇒ tan-1x = -y
⇒ y = - tan-1x
From Eq. 1:- Put the value of y
⇒ tan-1 (-x) = - tan-1x (Hence Proved….)
(iii) cosec-1 (-x) = -cosec-1x , |x| ≥ 1
Proof:- Let y = cosec-1 (-x) ………(1)
⇒ cosec y = -x
⇒ x = -cosec y
We know -cosec y = cosec (-y)
⇒ x = cosec (-y)
⇒ cosec-1x = -y
⇒ y = - cosec-1x
From Eq. 1:- Put the value of y
⇒ cosec-1 (-x) = - cosec-1x (Hence Proved….)
3. (i)cos-1 (-x) = Ï€ - cos-1x , x ∈ [-1,1]
Proof:- Let y = cos-1 (-x) ………(1)
cos y = -x
x = -cos y
We know cos(Ï€-y) = -cos y
x = cos (Ï€-y)
cos-1x = π-y
y = π-cos-1x
From Eq. 1:- Put the value of y
cos-1 (-x) = Ï€-cos-1x (Hence Proved….)
(ii)sec-1 (-x) = Ï€ - sec-1x , |x| ≥ 1
Proof:- Let y = sec-1 (-x) …………(1)
sec y = -x
x = -sec y
We know sec(Ï€-y) = -sec y
x = sec (Ï€-y)
sec-1x = π-y
y = π-sec-1x
From Eq. 1:- Put the value of y
sec-1 (-x) = Ï€-sec-1x (Hence Proved….)
(iii)cot-1 (-x) = Ï€ - cot-1x , x ∈ R
Proof:- Let y = cot-1 (-x) ………(1)
cot y = -x
x = -cot y
We know cot(Ï€-y) = -cot y
x = cot (Ï€-y)
cot-1x = π-y
y = π-cot-1x
From Eq. 1:- Put the value of y
cot-1 (-x) = Ï€-cot-1x (Hence Proved….)
4.(i) sin-1x + cos-1x = Ï€/2 , x ∈ [-1,1]
Proof:- Let y = sin-1x…………………………….(1)
⇒ x = sin y
⇒ x = cos(Ï€/2 - y)
We know cos (Ï€/2 - y) = sin y
⇒ cos-1x = Ï€/2 – y
From Eq. 1:- Put the value of y
⇒ cos-1x = Ï€/2 - sin-1x
⇒ sin-1x + cos-1x = Ï€/2 (Hence Proved….)
(ii) tan-1x + cot-1x = Ï€/2 , x ∈ R
Proof:- Let y = tan-1x………(1)
⇒ x = tan y
⇒ x = cot (Ï€/2 - y)
We know cot (Ï€/2 - y) = tan y
⇒ cot-1x = Ï€/2 – y
From Eq. 1:- Put the value of y
⇒ cot-1x = Ï€/2 - tan-1x
⇒ tan-1x + cot-1x = Ï€/2 (Hence Proved….)
(iii) sec-1x + cosec-1x = Ï€/2 , |x| ≥ 1
Proof:- Let y = sec-1x……………(1)
⇒ x = sec y
⇒ x = cosec (Ï€/2 - y)
We know cosec (Ï€/2 - y) = sec y
⇒ cosec-1x = Ï€/2 – y
From Eq. 1:- Put the value of y
⇒ cosec-1x = Ï€/2 - sec-1x
⇒ sec-1x + cosec-1x = Ï€/2 (Hence Proved….)
5.(i) tan-1x + tan-1y = tan-1 [(x + y) / 1-xy] , xy<1
Proof:- Let tan-1x = m and tan-1y = n………(1)
⇒ x = tan m and y =tan n………(2)
⇒ tan (m + n) = [(tan m + tan n) / 1-(tan m*tan n)]
From Eq. 2:- Put the values
⇒ tan (m + n) = [(x + y) / 1-xy]
⇒ m + n = tan-1[(x + y) / 1-xy]
From Eq. 1:- Put the values
⇒ tan-1x + tan-1y = tan-1[(x + y) / 1-xy] (Hence Proved….)
(ii) tan-1x - tan-1y = tan-1 [(x - y) / 1+xy] , xy>-1
Proof:- Let tan-1x = m and tan-1y = n…….(1)
⇒ x = tan m and y =tan n…………. (2)
⇒ tan (m - n) = [(tan m - tan n) / 1+(tan m*tan n)]
From Eq. 2:- Put the values
⇒ tan (m - n) = [(x - y) / 1+xy]
⇒ m - n = tan-1[(x - y) / 1+xy]
From Eq. 1:- Put the values
⇒ tan-1x - tan-1y = tan-1[(x - y) / 1+xy] (Hence Proved….)
6.(i) cot-1x + cot-1y = cot-1[(xy-1) / x+y]
Proof:- Let cot-1x = m and cot-1y = n……….(1)
⇒ x = cot m and y = cot n………….(2)
We know cot (m + n) = [(cot m*cot n -1) / cot m + cot n]
From Eq. 2:- Put the values
⇒ cot (m + n) = [(xy-1) / x + y]
⇒ m + n = cot-1[(xy-1) / x + y]
From Eq. 1:- Put the values
⇒ cot-1x + cot-1y = cot-1[(xy-1) / x + y] (Hence Proved….)
(ii) cot-1x - cot-1y = cot-1[(xy+1) / y-x]
Proof:- Let cot-1x = m and cot-1y = n…….(1)
⇒ x = cot m and y = cot n……….(2)
We know cot (m - n) = [(cot m*cot n +1) / cot n - cot m]
From Eq. 2:- Put the values
⇒ cot (m - n) = [(xy+1) / y - x]
⇒ m - n = cot-1[(xy+1) / y - x]
From Eq. 1:- Put the values
⇒ cot-1x - cot-1y = cot-1[(xy+1) / y - x] (Hence Proved….)
7.(i) 2tan-1x = sin-1 (2x/1+x2) , |x|≤1
Proof:- Let y = tan-1x ….(1)
⇒ x = tan y ….(2)
We know sin 2y = 2tan y / 1+tan2y
From Eq. 2:- Put the value
⇒ sin 2y = 2x / 1+x2
⇒ 2y = sin-1 (2x / 1+x2)
From Eq. 1:- Put the value of y
⇒ 2 tan-1x = sin-1 (2x / 1+x2) (Hence Proved….)
(ii) 2tan-1x = cos-1 [(1-x2)/1+x2] , x≥0
Proof:- Let y = tan-1x …….(1)
⇒ x = tan y …………(2)
We know cos 2y = 1-tan2y / 1+tan2y
From Eq. 2:- Put the value
⇒ cos 2y = 1-x2 / 1+x2
⇒ 2y = cos-1 (1-x2 / 1+x2)
From Eq. 1:- Put the value of y
⇒ 2 tan-1x = cos-1 (1-x2 / 1+x2) (Hence Proved….)
(iii) 2tan-1x = tan-1 (2x/1-x2) , -1< x < 1
Proof:- Let y = tan-1x …….(1)
⇒ x = tan y …….(2)
We know tan 2y = 2tan y / 1-tan2y
From Eq. 2:- Put the value
⇒ tan 2y = 2x / 1-x2
⇒ 2y = tan-1 (2x / 1-x2)
From Eq. 1:- Put the value of y
⇒ 2 tan-1x = tan-1 (2x / 1-x2) (Hence Proved….)
8.(i) sin(sin-1x) = x , x ∈ [-1,1] and sin-1(sin x) = x , x ∈ [-Ï€/2 , Ï€/2]
Proof:- Let y = sin-1x….(1)
⇒ x = sin y………….(2)
From Eq. 1:- Put the values
⇒ x = sin(sin-1x)
⇒ sin(sin-1x) = x (Hence Proved….)
Eq. 1 is :- y = sin-1x
From Eq. 2:- Put the values
⇒ y = sin-1(sin y)
Replace y by x:-
⇒ sin-1(sin x) = x (Hence Proved….)
9.(i) sin-1x + sin-1y = sin-1[x√1-y2 + y√1-x2]
Proof:- Let sin-1x =A and sin-1y = B ….(1)
⇒ x = sin A and y = sin B …….(2)
We know sin (A + B) = sin A*cos B + cos A*sinB
{{Hint:- sin2B + cos2B =1
⇒ cos2B = 1-sin2B
⇒ cos B = √1-sin2B
Similarly, cos A = √1-sin2A}}
From Eq. 2:- Put the values
⇒ sin (A + B) = [x√1-y2 + y√1-x2]
⇒ A + B = sin-1[x√1-y2 + y√1-x2]
From Eq. 1:- Put the values
⇒ sin-1x + sin-1y = sin-1[x√1-y2 + y√1-x2] (Hence Proved….)
(ii) sin-1x - sin-1 y = sin-1[x√1-y2 - y√1-x2]
Proof:- Let sin-1x =A and sin-1y = B …….(1)
⇒ x = sin A and y = sin B …….(2)
We know sin (A - B) = sin A*cos B - cos A*sinB
{{Hint:- sin2B + cos2B =1
⇒ cos2B = 1-sin2B
⇒ cos B = √1-sin2B
Similarly, cos A = √1-sin2A}}
From Eq. 2:- Put the values
⇒ sin (A - B) = [x√1-y2 - y√1-x2]
⇒ A - B = sin-1[x√1-y2 - y√1-x2]
From Eq. 1:- Put the values
⇒ sin-1x - sin-1y = sin-1[x√1-y2 - y√1-x2] (Hence Proved….)
10.(i) cos-1x + cos-1y = cos-1[xy- √1-x2 √1-y2]
Proof:- Let cos-1x =A and cos-1y = B …….(1)
⇒ x = cos A and y = cos B ……….(2)
We know cos (A + B) = cos A*cos B - sin A*sinB
{{Hint:- sin2B + cos2B =1
⇒ sin2B = 1-cos2B
⇒ sin B = √1-cos2B
Similarly, sin A = √1-cos2A}}
From Eq. 2:- Put the values
⇒ cos (A + B) = [xy -√1-x2√1-y2]
⇒ A + B = cos-1[xy -√1-x2√1-y2]
From Eq. 1:- Put the values
⇒ cos-1x + cos-1y = cos-1[xy -√1-x2√1-y2] (Hence Proved….)
(ii) cos-1x - cos-1y = cos-1[xy+ √1-x2 √1-y2]
Proof:- Let cos-1x =A and cos-1y = B ……….(1)
⇒ x = cos A and y = cos B …….(2)
We know cos (A - B) = cos A*cos B + sin A*sinB
{{Hint:- sin2B + cos2B =1
⇒ sin2B = 1-cos2B
⇒ sin B = √1-cos2B
Similarly, sin A = √1-cos2A}}
From Eq. 2:- Put the values
⇒ cos (A - B) = [xy +√1-x2√1-y2]
⇒ A - B = cos-1[xy +√1-x2√1-y2]
From Eq. 1:- Put the values
⇒ cos-1x - cos-1y = cos-1[xy +√1-x2√1-y2] (Hence Proved….)
You can download this file to click on Download:- DOWNLOAD
Check CBSE 2020-21 new syllabus here:- Syllabus
If you have any queries, you can ask me in the comment section
And you can follow/subscribe me for the latest updates on your e-mails
For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email
Thanks for Reading ......
Post a Comment
Comment me for any queries or topic which you want to learn