Important Note

Please turn desktop mode or rotate your mobile screen for better view

Definitions and Formulas

Continuous Function:-  

(1) If f is a real function on a subset of real numbers and let c be a point in the domain of f. Then f is continuous at c if

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Means, if the left-hand limit, right-hand limit, and the value of the function at x=c exists and also equal to each other, then f is said to be a continuous function at x=c.

OR

In general, if the value of the function at x=c equals the limit of the function at x=c then the function is called a continuous function.

(2) A real function f is said to be continuous if it is continuous at every point in the domain of f.

Discontinuous Function:- If the value of the function at x=c does not equal the limit of the function at x=c then the function is called a discontinuous function.

Algebra of continuous Function:- Suppose f and g be two real functions continuous a real number c. Then

(1) f+g is continuous at x=c.

Proof:- Given f and g be two continuous functions at x=c then

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">f</mi><mo>+</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced open="[" close="]"><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>+</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>+</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>continuous</mi><mo>&#xA0;</mo><mi>function</mi><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>+</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfenced><mrow><mi mathvariant="normal">f</mi><mo>+</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence, f+g is also a continuous function.

(2) f-g is continuous at x=c.

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">f</mi><mo>-</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced open="[" close="]"><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>continuous</mi><mo>&#xA0;</mo><mi>function</mi><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>-</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfenced><mrow><mi mathvariant="normal">f</mi><mo>-</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence, f-g is also a continuous function.

(3) f.g is continuous at x=c.

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">f</mi><mo>.</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced open="[" close="]"><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>.</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>.</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>continuous</mi><mo>&#xA0;</mo><mi>function</mi><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>.</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfenced><mrow><mi mathvariant="normal">f</mi><mo>.</mo><mi mathvariant="normal">g</mi></mrow></mfenced><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence, f.g is also a continuous function.

(4) f/g is continuous at x=c.  (Provided g(c) doesn’t equal to zero.)

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mfrac><mi mathvariant="normal">f</mi><mi mathvariant="normal">g</mi></mfrac></mfenced><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced open="[" close="]"><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow><mrow><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfrac></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mrow><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow><mrow><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>continuous</mi><mo>&#xA0;</mo><mi>function</mi><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mrow><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>=</mo><mfenced><mfrac><mi mathvariant="normal">f</mi><mi mathvariant="normal">g</mi></mfrac></mfenced><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence, f/g is also a continuous function.

NOTE:- If f and g are real valued functions such that (fog) is defined at c. If g is continuous at c and if f is continuous at g(c), then (fog) is also continuous at c.

Differentiability:- Let f is a real function and c is a point in its domain. The derivative of f at c is defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">h</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mrow><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">h</mi></mrow></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mi mathvariant="normal">h</mi></mfrac></math> provided this limit exists. 

NOTE:- Derivative of f at c is denoted by f’(c) or d(f(x))/d(x). Then,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mo>'</mo><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">h</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">h</mi></mrow></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow><mi mathvariant="normal">h</mi></mfrac></math>

The process of finding derivates is known as differentiation and phrase differentiate f(x) with respect to x is known as f’(x).

Algebra of derivatives:- 

(1) (u±v)’=u’+v’

(2) (uv)’=u’v+uv’ (Leibnitz Rule or Product Rule)

(3) (u/v)’=(u’v-uv’)/v2 (provided v doesn’t equal to 0) (Quotient Rule)

NOTE:- If a function f is differentiable at point c, then it is also continuous at that point.

Proof:- Given f is differentiable at c, then

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfrac><mo>=</mo><mi mathvariant="normal">f</mi><mo>'</mo><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>=</mo><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfrac><mo>.</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced open="[" close="]"><mrow><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfrac><mo>.</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mfrac><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfrac></mfenced><mo>.</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>From</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>&#xA0;</mo><mn>1</mn></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>-</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mo>'</mo><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>.</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Derivatives Formulas:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mn>1</mn></mfenced><mo>&#xA0;</mo><mfrac><mrow><mo>&#xA0;</mo><mi mathvariant="normal">d</mi><mo>(</mo><mi mathvariant="normal">c</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>0</mn><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>(</mo><mi mathvariant="normal">c</mi><mo>=</mo><mi>constant</mi><mo>)</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>(</mo><mn>2</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mo>&#xA0;</mo><mi mathvariant="normal">d</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>1</mn><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>(</mo><mn>3</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi mathvariant="normal">x</mi><mi mathvariant="normal">n</mi></msup><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi>nx</mi><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup><mspace linebreak="newline"/><mo>(</mo><mn>4</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mi mathvariant="normal">d</mi><mi>dx</mi></mfrac><mfenced><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>5</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></msup><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></msup><mspace linebreak="newline"/><mo>(</mo><mn>6</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi mathvariant="normal">a</mi><mi mathvariant="normal">x</mi></msup><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi mathvariant="normal">a</mi><mi mathvariant="normal">x</mi></msup><msub><mi>log</mi><mi mathvariant="normal">e</mi></msub><mi mathvariant="normal">a</mi></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msub><mi>log</mi><mi mathvariant="normal">a</mi></msub><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><msub><mi>log</mi><mi mathvariant="normal">a</mi></msub><mi mathvariant="normal">e</mi><mspace linebreak="newline"/><mo>(</mo><mn>8</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>9</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>10</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>tan</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi>sec</mi><mn>2</mn></msup><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>11</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>cot</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mo>-</mo><msup><mi>cosec</mi><mn>2</mn></msup><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>12</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>.</mo><mi>tan</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>13</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi>cosec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mo>-</mo><mi>cosec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>.</mo><mi>cot</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>(</mo><mn>14</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msub><mi>log</mi><mi mathvariant="normal">e</mi></msub><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>15</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi mathvariant="normal">u</mi><mo>.</mo><mi mathvariant="normal">v</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mi mathvariant="normal">u</mi><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi mathvariant="normal">v</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>+</mo><mi mathvariant="normal">v</mi><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mi mathvariant="normal">u</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>16</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><msqrt><mi mathvariant="normal">x</mi></msqrt></mrow></mfrac></math>

Derivatives of composite function(Chain Rule):- 

For Example:- f(x) = (2x+1)3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">f</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><msup><mrow><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>3</mn></msup><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>(</mo><mfrac><msup><mi>dx</mi><mi mathvariant="normal">n</mi></msup><mi>dx</mi></mfrac><mo>=</mo><msup><mi>nx</mi><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">f</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>3</mn><msup><mrow><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">f</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>3</mn><msup><mrow><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mfenced open="[" close="]"><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>+</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>dx</mi></mfrac></mrow></mfenced><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">f</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>3</mn><msup><mrow><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>[</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>]</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>(</mo><mfrac><mi>dc</mi><mi>dx</mi></mfrac><mo>=</mo><mn>0</mn><mo>)</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">f</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo><mo>]</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mn>6</mn><msup><mrow><mo>(</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></math>

Derivatives of implicit function:- 

For Example:- Find dy/dx, if y+siny = cos x.

Solun:- Differentiate w.r.t x:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>+</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced></mrow><mi>dx</mi></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced></mrow><mi>dx</mi></mfrac><mo>=</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced></mrow><mi>dx</mi></mfrac><mo>=</mo><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>+</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>.</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>=</mo><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mfenced><mrow><mn>1</mn><mo>+</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mfrac></math>

Derivatives of inverse trigonometry function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mn>1</mn></mfenced><mo>&#xA0;</mo><mfrac><mrow><mo>&#xA0;</mo><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt></mfrac><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>(</mo><mn>2</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mo>&#xA0;</mo><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>cos</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><msqrt><mn>1</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt></mfrac><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>(</mo><mn>3</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>4</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>cot</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>5</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>sec</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">x</mi><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></mrow></mfrac><mspace linebreak="newline"/><mo>(</mo><mn>6</mn><mo>)</mo><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mo>(</mo><msup><mi>cosec</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">x</mi><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></mrow></mfrac></math>

Logarithmic Differentiation:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>=</mo><msup><mfenced open="[" close="]"><mrow><mi mathvariant="normal">u</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mrow><mi mathvariant="normal">v</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></msup><mspace linebreak="newline"/><mi>Taking</mi><mo>&#xA0;</mo><mi>log</mi><mo>&#xA0;</mo><mi>both</mi><mo>&#xA0;</mo><mi>side</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>log</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>=</mo><mi>log</mi><mfenced><msup><mfenced open="[" close="]"><mrow><mi mathvariant="normal">u</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mrow><mi mathvariant="normal">v</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></msup></mfenced><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi>log</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">a</mi><mi mathvariant="normal">x</mi></msup><mo>=</mo><mi>xlog</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>log</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>=</mo><mi mathvariant="normal">v</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>.</mo><mi>log</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">u</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/></math>

Differentiate w.r.t. x:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mi mathvariant="normal">y</mi></mfrac><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>=</mo><mi mathvariant="normal">v</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced open="[" close="]"><mrow><mi>log</mi><mfenced open="{" close="}"><mrow><mi mathvariant="normal">u</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced></mrow></mfenced></mrow><mi>dx</mi></mfrac><mo>+</mo><mi>log</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">u</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">v</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced></mrow><mi>dx</mi></mfrac></math>

Then calculate dy/dx.

Derivatives of Functions in Parametric Form:- Let x=f(t) and y=g(t) is said to be a parametric form with t as a parameter

x=f(t)

Differentiate w.r.t. t:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dx</mi><mi>dt</mi></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">t</mi></mfenced></mrow></mfenced></mrow><mi>dt</mi></mfrac></math>..........(1)

y=g(t)

Differentiate w.r.t. t:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dt</mi></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">t</mi></mfenced></mrow></mfenced></mrow><mi>dt</mi></mfrac></math>...........(2)

Eq. 2/Eq. 1:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>=</mo><mfrac><mrow><mi mathvariant="normal">g</mi><mo>'</mo><mfenced><mi mathvariant="normal">t</mi></mfenced></mrow><mrow><mi mathvariant="normal">f</mi><mo>'</mo><mfenced><mi mathvariant="normal">t</mi></mfenced></mrow></mfrac></math>

Second Order Derivative:- Second order derivative is denoted by f’’(x), d2y/dx2, D2y, y’’, y2.

For example:- Find d2y/dx2, if y=x3+tan x.

Solun:- Given y=x3+tan x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><msup><mi mathvariant="normal">x</mi><mi mathvariant="normal">n</mi></msup></mfenced></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi>nx</mi><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mi>tanx</mi></mfenced></mrow><mi>dx</mi></mfrac><mo>=</mo><msup><mi>sec</mi><mn>2</mn></msup><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mi>Differentiate</mi><mo>&#xA0;</mo><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">r</mi><mo>.</mo><mi mathvariant="normal">t</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi>dy</mi><mi>dx</mi></mfrac><mo>=</mo><mn>3</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>sec</mi><mn>2</mn></msup><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mi>Again</mi><mo>,</mo><mo>&#xA0;</mo><mi>differentiate</mi><mo>&#xA0;</mo><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">r</mi><mo>.</mo><mi mathvariant="normal">t</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></mrow><msup><mi>dx</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mfenced><mrow><mn>2</mn><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mfrac><mrow><mi mathvariant="normal">d</mi><mfenced><mrow><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced></mrow><mi>dx</mi></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></mrow><msup><mi>dx</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mfenced><mrow><mn>2</mn><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mfenced><mrow><mi>sec</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>.</mo><mi>tan</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></mrow><msup><mi>dx</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><msup><mi>sec</mi><mn>2</mn></msup><mi mathvariant="normal">x</mi><mo>.</mo><mi>tan</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Derivatives of Logarithmic and Exponential Functions:-


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi mathvariant="normal">d</mi><mi>dx</mi></mfrac><mfenced><msup><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></msup></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></msup><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mi mathvariant="normal">d</mi><mi>dx</mi></mfrac><mfenced><mrow><mi>log</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></math>


Download PDF of Notes of Continuity & Differentiability


If you have any queries, you can ask me in the comment section


And you can follow/subscribe me for the latest updates on your e-mails

For subscribing me follow these instructions:-

1. Fill your E-mail address

2. Submit Recaptcha

3. Go to your email and then click on the verify link

Then you get all update on your email


Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post