Important Note

Please turn desktop mode or rotate your mobile screen for better view

Exercise 4.4

Write Minors and Cofactors of the elements of following determinants:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mo>&#xA0;</mo><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Cofactor = (-1)i+jMij 

Minor of 2 = |3| = 3 and Cofactor of 2 = (-1)1+1|3| = 3

Minor of -4 = |0| = 0 and Cofactor of -4 = (-1)1+2|0| = 0

Minor of 0 = |-4| = -4 and Cofactor of 0 = (-1)2+1|-4| = 4

Minor of 3 = |2| = 2 and Cofactor of 3 = (-1)2+2|2| = 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">d</mi></mtd></mtr></mtable></mfenced></math>

Solun:- Cofactor = (-1)i+jMij

Minor of a = |d| = d and Cofactor of a = (-1)1+1|d| = d

Minor of c = |b| = b and Cofactor of c = (-1)1+2|b| = -b

Minor of b = |c| = c and Cofactor of b = (-1)2+1|c| = -c

Minor of d = |a| = a and Cofactor of d = (-1)2+2|a| = a

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mo>&#xA0;</mo><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn></math>

Cofactor = (-1)i+jMij 

Cofactor of 1 = (-1)1+1 M11 = 1

Cofactor of 0 = (-1)1+2 M12 = 0

Cofactor of 0 = (-1)1+3 M13 = 0

Cofactor of 0 = (-1)2+1 M21 = 0

Cofactor of 1 = (-1)2+2 M22 = 1

Cofactor of 0 = (-1)2+3 M23 = 0

Cofactor of 0 = (-1)3+1 M31 = 0

Cofactor of 0 = (-1)3+2 M32 = 0

Cofactor of 1 = (-1)3+3 M33 = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>6</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>4</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>3</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>5</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>20</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Minor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mn>2</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn></math>

Cofactor = (-1)i+jMij 

Cofactor of 1 = (-1)1+1 M11 = 11

Cofactor of 0 = (-1)1+2 M12 = -6

Cofactor of 4 = (-1)1+3 M13 = 3

Cofactor of 3 = (-1)2+1 M21 = 4

Cofactor of 5 = (-1)2+2 M22 = 2

Cofactor of -1 = (-1)2+3 M23 = -1

Cofactor of 0 = (-1)3+1 M31 = -20

Cofactor of 1 = (-1)3+2 M32 = 13

Cofactor of 2 = (-1)3+3 M33 = 5

3. Using Cofactors of elements of second row, evaluate:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>

Solun:- We know the sum of the product of elements of any row (or column) with their corresponding cofactors is a determinant value.

Cofactor of second row:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced><mrow><mn>9</mn><mo>-</mo><mn>16</mn></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>7</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>15</mn><mo>-</mo><mn>8</mn></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>7</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced><mrow><mn>10</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>7</mn></math>

Δ = a21A21+a22A22+a23A23 = 14+0-7 = 7

4. Using Cofactors of elements of third column, evaluate:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>x</mi></mtd><mtd><mi>y</mi><mi>z</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>y</mi></mtd><mtd><mi>z</mi><mi>x</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>z</mi></mtd><mtd><mi>x</mi><mi>y</mi></mtd></mtr></mtable></mfenced></math>

Solun:- We know the sum of the product of elements of any row (or column) with their corresponding cofactors is a determinant value.

Cofactor of third column:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mi>z</mi><mo>-</mo><mi>y</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced><mrow><mi>z</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>x</mi><mo>-</mo><mi>z</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced></math>

Δ = a13A13+a23A23+a33A33 = yz(z-y)+zx(x-z)+xy(y-x)

Δ = yz2-y2z+zx2-xz2+xy2-x2y

Δ = (yz2-y2z)+(-xz2+xy2)+(zx2-x2y)

Δ = yz(z-y)+x(y2-z2)-x2(y-z)

Δ = -yz(y-z)+x(y-z)(y+z)-x2(y-z)

Δ = (y-z){-yz+x(y+z)-x2}

Δ = (y-z){-yz+xy+xz-x2}

Δ = (y-z){y(x-z)-x(x-z)}

Δ = (y-z)(x-z)(y-x)

Δ = (x-y)(y-z)(z-x)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">5</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><msub><mi mathvariant="normal">a</mi><mn>11</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>12</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>13</mn></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">a</mi><mn>21</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>22</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>23</mn></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">a</mi><mn>31</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>32</mn></msub></mtd><mtd><msub><mi mathvariant="normal">a</mi><mn>33</mn></msub></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">and</mi><mo mathvariant="bold">&#xA0;</mo><msub><mi mathvariant="bold">A</mi><mi mathvariant="bold">ij</mi></msub><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">cofactors</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><msub><mi mathvariant="bold">a</mi><mi mathvariant="bold">ij</mi></msub><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">value</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">&#x2206;</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">given</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">by</mi></math>

(A) a11A31+a12A32+a13A33

(B) a11A11+a12A21+a13A31

(C) a21A11+a22A12+a23A13

(D) a11A11+a21A21+a31A31

Solun:- We know the sum of the product of elements of any row (or column) with their corresponding cofactors is a determinant value.

Then Answer is………….D.


See Also:-

If you have any queries, you can ask me in the comment section And you can follow/subscribe me for the latest updates on your e-mails For subscribing me follow these instructions:- 1. Fill your E-mail address 2. Submit Recaptcha 3. Go to your email and then click on the verify link Then you get all update on your email Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post