Exercise 5.5
Differentiate the functions given in Exercises 1 to 11 w.r.t. x.
1. cos x. cos 2x. cos 3x
Solun:- Let y = cos x. cos 2x. cos 3x
Differentiate w.r.t. x:-
We know that:-
Solun:- Let
Taking log both side:-
Differentiate w.r.t. x:-
3. (log x)cos x
Solun:- Let y = (log x)cos x
Taking log both side:-
log y = [log((log x)cos x)]
We know that log xn = n.(log x)
log y = cos x.[log(log x)]
Differentiate w.r.t. x:-
We know that:-
4. xx - 2sin x
Solun:- Let y = xx - 2sin x
Let u = xx and v = 2sin x
⇒ y = u - v
⇒ u = xx
Taking log both side:-
⇒ log u = log xx
We know that log xn = n.(log x)
⇒ log u = x.log x
Differentiate w.r.t. x:-
⇒ v = 2sin x
Taking log both side:-
⇒ log v = log 2sin x
We know that log xn = n.(log x)
⇒ log v = (sin x).log 2
Differentiate w.r.t. x:-
Then dy/dx = du/dx - dv/dx
⇒ dy/dx = xx(1+log x) - 2sin x.cos x.log 2
5. (x+3)2.(x+4)3.(x+5)4
Solun:- Let y = (x+3)2.(x+4)3.(x+5)4
Differentiate w.r.t. x:-
Solun:- Let
⇒ y = u + v
⇒ u = (x+1/x)x
Taking log both sides:-
⇒ log u = log (x+1/x)x
We know that log xn = n.(log x)
⇒ log u = x.log (x+1/x)
Differentiate w.r.t. x:-
⇒ v = x1+1/x
Taking log both sides:-
⇒ log v = log (x)1+1/x
We know that log xn = n.(log x)
⇒ log v = (1+1/x).log (x)
Differentiate w.r.t. x:-
7. (log x)x + xlog x
Solun:- Let y = (log x)x + xlog x
Differentiate w.r.t. x:-
⇒ y = u + v
⇒ u = (log x)x
Taking log both sides:-
⇒ log u = log [(log x)x]
We know that log xn = n.(log x)
⇒ log u = x.[log (log x)]
Differentiate w.r.t. x:-
We know that:-
⇒ v = xlog x
Taking log both sides:-
⇒ log v = log (x)log x
We know that log xn = n.(log x)
⇒ log v = log x.log x
⇒ log v = (log x)2
Differentiate w.r.t. x:-
8. (sin x)x + sin-1 √x
Solun:- Let y = (sin x)x + sin-1 √x
Differentiate w.r.t. x:-
⇒ y = u + sin-1 √x
⇒ u = (sin x)x
Taking log both sides:-
⇒ log u = [log (sin x)x]
We know that log xn = n.(log x)
⇒ log u = x.[log (sin x)]
Differentiate w.r.t. x:-
We know that:-
Then y = u + sin-1 √x
9. xsin x + (sin x)cos x
Solun:- Let y = xsin x + (sin x)cos x
Differentiate w.r.t. x:-
⇒ y = u + v
⇒ u = xsin x
Taking log both sides:-
⇒ log u = log [xsin x]
We know that log xn = n.(log x)
⇒ log u = sin x.log x
Differentiate w.r.t. x:-
We know that:-
⇒ v = (sin x)cos x
Taking log both sides:-
⇒ log v = log (sin x)cos x
We know that log xn = n.(log x)
⇒ log v = cos x.log (sin x)
Differentiate w.r.t. x:-
⇒ y = u + v Then
Solun:- Let
Differentiate w.r.t. x:-
⇒ y = u + v
⇒ u = xxcos x
Taking log both sides:-
⇒ log u = log [xxcos x]
We know that log xn = n.(log x)
⇒ log u = x.cos x.log x
Differentiate w.r.t. x:-
We know that:-
We know that
Differentiate w.r.t. x:-
⇒ y = u + v Then
11. (xcos x)x + (xsin x)1/x
Solun:- Let y = (xcos x)x + (xsin x)1/x
Differentiate w.r.t. x:-
⇒ y = u + v
⇒ u = (xcos x)x
Taking log both sides:-
⇒ log u = log (xcos x)x
We know that log xn = n.(log x)
⇒ log u = x.log (xcos x)
Differentiate w.r.t. x:-
We know that:-
⇒ v = (xsin x)1/x
Taking log both sides:-
⇒ log v = log (xsin x)1/x
We know that log xn = n.(log x)
⇒ log v = (1/x).log (x.sin x)
Differentiate w.r.t. x:-
⇒ y = u + v Then
Find dy/dx of the functions given in Exercises 12 to 15.
12. xy + yx = 1
Solun:- Let xy + yx = 1
⇒ u + v = 1
⇒ u = xy
Taking log both sides:-
⇒ log u = log xy
We know that log xn = n.(log x)
⇒ log u = y.log x
Differentiate w.r.t. x:-
We know that:-
⇒ v = yx
Taking log both sides:-
⇒ log v = log yx
We know that log xn = n.(log x)
⇒ log v = x.log y
Differentiate w.r.t. x:-
Given eq. is u+v = 1
Differentiate w.r.t. x:-
13. yx = xy
Solun:- Let yx = xy
⇒ u = v
⇒ u = yx
Taking log both sides:-
⇒ log u = log yx
We know that log xn = n.(log x)
⇒ log u = x.log y
Differentiate w.r.t. x:-
We know that:-
⇒ v = xy
Taking log both sides:-
⇒ log v = log xy
We know that log xn = n.(log x)
⇒ log v = y.log x
Differentiate w.r.t. x:-
Given eq. is u = v
Differentiate w.r.t. x:-
Given xy = yx
14. (cos x)y = (cos y)x
Solun:- Let (cos x)y = (cos y)x
⇒ u = v
⇒ u = (cos x)y
Taking log both sides:-
⇒ log u = log (cos x)y
We know that log xn = n.(log x)
⇒ log u = y.log (cos x)
Differentiate w.r.t. x:-
We know that:-
⇒ v = (cos y)x
Taking log both sides:-
⇒ log v = (cos y)x
We know that log xn = n.(log x)
⇒ log v = x.log (cos y)
Differentiate w.r.t. x:-
Given eq. is u = v
Differentiate w.r.t. x:-
Given (cos x)y = (cos y)x
15. xy = e(x-y)
Solun:- Let xy = e(x-y)
Differentiate w.r.t. x:-
We know that
Given xy = e(x-y)
16. Find the derivative of the function given by f(x) = (1+x)(1+x2)(1+x4)(1+x8) and hence find f’(1).
Solun:- Let f(x) = (1+x)(1+x2)(1+x4)(1+x8)
Taking log both side:-
log [f(x)] = log (1+x)+log (1+x2)+log (1+x4)+log (1+x8)
Differentiate w.r.t. x:-
Put x = 1
17. Differentiate (x2-5x+8). (x3+7x+9) in three ways mentioned below:
(i) by using product rule
Solun:- Let y = (x2-5x+8). (x3+7x+9)
Differentiate w.r.t. x:-
We know that
(ii) by expanding the product to obtain a single polynomial
Solun:- Let y = (x2-5x+8). (x3+7x+9)
⇒ y = x5+7x3+9x2-5x4-35x2-45x+8x3+56x+72
Differentiate w.r.t. x:-
(iii) by logarithmic differentiation
Solun:- Let y = (x2-5x+8). (x3+7x+9)
Taking log both side
⇒ log y = log [(x2-5x+8). (x3+7x+9)]
⇒ log y = log (x2-5x+8) + log (x3+7x+9)
Differentiate w.r.t. x:-
18. If u, v and w are functions of x, then show that
in two ways- first by repeated application of product rule, second by logarithmic differentiation.
Solun:- Let y = (u.v).w
By Product Rule:-
Differentiate w.r.t. x:-
Hence R.H.S = L.H.S
By logarithmic differentiation:-
⇒ y = u.v.w
⇒ log y = log (u.v.w)
⇒ log y = log u + log v + log w
Hence R.H.S = L.H.S
So, in both cases:- R.H.S = L.H.S
Post a Comment
Comment me for any queries or topic which you want to learn