Important Note

Please turn desktop mode or rotate your mobile screen for better view

Miscellaneous Exercise

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">1</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Prove</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">determinant</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">independent</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">&#x3B8;</mi><mo mathvariant="bold">.</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced></math>

⇒ |A| = x(-x2-1)-sinθ(-xsinθ-cosθ)+cosθ(-sinθ+xcosθ)

⇒ |A| = -x3-x+xsin2θ+sinθcosθ-sinθcosθ+xcos2θ

⇒ |A| = -x3-x+xsin2θ+xcos2θ

⇒ |A| = -x3-x+x(sin2θ+cos2θ)

We know that sin2θ+cos2θ = 1

⇒ |A| = -x3-x+x

⇒ |A| = -x3

Hence determinant is independent of θ.

2. Without expanding the determinant, prove that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><mi>bc</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><mi>ca</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><mi>ab</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd></mtr></mtable></mfenced></math>

Solun:- Taking L.H.S:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><mi>bc</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><mi>ca</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><mi>ab</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mi>abc</mi></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd><mtd><mi>abc</mi></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd><mtd><mi>abc</mi></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd><mtd><mi>abc</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi>aR</mi><mn>1</mn></msub><mo>,</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>&#x2192;</mo><msub><mi>bR</mi><mn>2</mn></msub><mo>,</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub><mo>&#x2192;</mo><msub><mi>cR</mi><mn>3</mn></msub><mo>&#xA0;</mo></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfrac><mi>abc</mi><mi>abc</mi></mfrac><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><mo>&#x2194;</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>&#x2194;</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>3</mn></msup></mtd></mtr></mtable></mfenced></math>

=R.H.S.   (Hence Proved……)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">3</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Evaluate</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi>cos&#x3B1;</mi><mo>&#xA0;</mo><mi>cos&#x3B2;</mi></mtd><mtd><mi>cos&#x3B1;</mi><mo>&#xA0;</mo><mi>sin&#x3B2;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B2;</mi></mtd><mtd><mi>cos&#x3B2;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin&#x3B1;</mi><mo>&#xA0;</mo><mi>cos&#x3B2;</mi></mtd><mtd><mi>sin&#x3B1;</mi><mo>&#xA0;</mo><mi>sin&#x3B2;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi>cos&#x3B1;</mi><mo>&#xA0;</mo><mi>cos&#x3B2;</mi></mtd><mtd><mi>cos&#x3B1;</mi><mo>&#xA0;</mo><mi>sin&#x3B2;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B2;</mi></mtd><mtd><mi>cos&#x3B2;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin&#x3B1;</mi><mo>&#xA0;</mo><mi>cos&#x3B2;</mi></mtd><mtd><mi>sin&#x3B1;</mi><mo>&#xA0;</mo><mi>sin&#x3B2;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced></math>

⇒ |A| = cosαcosβ(cosαcosβ-0)-cosαsinβ(-cosαsinβ-0)-sinα(-sinαsin2β-sinαcos2β)

⇒ |A| = cos2αcos2β+cos2αsin2β+sin2α

⇒ |A| = cos2α(cos2β+sin2β)+sin2α

We know that cos2β+sin2β = 1

⇒ |A| = cos2α+sin2α

⇒ |A| = 1

4. If a,b and c are real numbers, and

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#x2206;</mo><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>

Show that either a+b+c=0 or a=b=c.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">b</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">b</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">b</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><mo>-</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>-</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>-</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi><mo>-</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>

⇒ 2(a+b+c)[1(a-b)(b-a)-(b-c)(a-c)] = 0

⇒ 2(a+b+c)[-(a-b)(a-b)-(b-c)(a-c)] = 0

⇒ 2(a+b+c)[-(a2+b2-2ab)-(ab-bc-ac+c2)] = 0

⇒ 2(a+b+c)[-b2-a2+2ab-ab+bc+ac-c2] = 0

⇒ 2(a+b+c)[-b2-a2+ab+bc+ac-c2] =0

So a+b+c =0 

And -2b2-2a2+2ab+2bc+2ac-2c2 = 0

⇒ (a-b)2+(b-c)2+(c-a)2 = 0

Squares are non-negative

⇒ (a-b) = 0

⇒ (b-c) = 0

⇒ (c-a) = 0

So a=b=c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">5</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Solve</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">equation</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">a</mi><mo mathvariant="bold">&#x2260;</mo><mn mathvariant="bold">0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mn>3</mn><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mn>3</mn><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>

⇒ (3x+a)[1(0+a2)] = 0

⇒ x = -a/3 and a=0

Given a doesn’t equal to 0 then

⇒ x = -a/3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">6</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Prove</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><mi>bc</mi></mtd><mtd><mi>ac</mi><mo>+</mo><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>+</mo><mi>ab</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><mi>ac</mi></mtd></mtr><mtr><mtd><mi>ab</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mo>+</mo><mi>bc</mi></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mtd><mtd><mi>bc</mi></mtd><mtd><mi>ac</mi><mo>+</mo><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>+</mo><mi>ab</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mtd><mtd><mi>ac</mi></mtd></mtr><mtr><mtd><mi>ab</mi></mtd><mtd><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mo>+</mo><mi>bc</mi></mtd><mtd><msup><mi mathvariant="normal">c</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mi>Take</mi><mo>&#xA0;</mo><mi>out</mi><mo>&#xA0;</mo><mi>common</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>,</mo><mi mathvariant="normal">b</mi><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">c</mi><mo>&#xA0;</mo><mi>from</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>,</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mi>abc</mi><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">a</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">b</mi><mo>+</mo><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced></math>

= abc[a(bc-ab-ac)-c(ac+bc-ab)+(a+c){(ab+ac+b2+bc)-b2}]

= abc[abc-a2b-a2c-ac2-bc2+abc+a2b+a2c+abc+abc+ac2+bc2]

= abc(4abc)

= 4a2b2c2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mo>&#xA0;</mo><mi>If</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>15</mn></mtd><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo>&#xA0;</mo><mi>find</mi><mo>&#xA0;</mo><msup><mfenced><mi>AB</mi></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>15</mn></mtd><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Cofactor = (-1)i+jMij

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>1</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>6</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>5</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">B</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">B</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi></mrow></mfenced></math>

|B| = 1(3)-2(-1)-2(2) = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">B</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

We know that (AB)-1 = B-1A-1

= (AB)-1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>15</mn></mtd><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">8</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi></math>

(i) [adj A]-1 = adj (A-1)       (ii) (A-1)-1 = A

Solun:- We know that transpose of cofactor matrix is adjoint matrix.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

Cofactor = (-1)i+jMij

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>14</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>11</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced></math>

⇒ |A| = 1(14)+2(-11)+1(-5) = -13

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">C</mi><mo>=</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>2</mn></mfenced></math>

We know that A-1 = 1/|A| (adj A)

⇒ (adj A)-1 = 1/|adj A| [adj(adj A)]

⇒ (adj A)-1 = 1/|adj A| (adj B) …………....(3)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">B</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>14</mn><mfenced><mrow><mo>-</mo><mn>13</mn></mrow></mfenced><mo>-</mo><mn>11</mn><mfenced><mrow><mo>-</mo><mn>26</mn></mrow></mfenced><mo>-</mo><mn>5</mn><mfenced><mrow><mo>-</mo><mn>33</mn><mo>+</mo><mn>20</mn></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>169</mn></math>

Calculating adj of adj A hence calculate adjoint of B:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>26</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>26</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>39</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>13</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">B</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>65</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>39</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>65</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>39</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>65</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

According to equation 3:-

⇒ (adj A)-1 = 1/|adj A| (adj B)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>169</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>39</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>65</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

Calculating adjoint of A-1 hence adjoint of C:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">C</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>169</mn></mfrac><mo>-</mo><mfrac><mn>9</mn><mn>169</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mfenced><mrow><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>169</mn></mfrac><mo>-</mo><mfrac><mn>15</mn><mn>169</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>2</mn><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>33</mn></mrow><mn>169</mn></mfrac><mo>+</mo><mfrac><mn>20</mn><mn>169</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mfenced><mrow><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>169</mn></mfrac><mo>-</mo><mfrac><mn>15</mn><mn>169</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>2</mn><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>1</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>169</mn></mfrac><mo>-</mo><mfrac><mn>25</mn><mn>169</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mfenced><mrow><mfrac><mrow><mo>-</mo><mn>42</mn></mrow><mn>169</mn></mfrac><mo>+</mo><mfrac><mn>55</mn><mn>169</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>33</mn></mrow><mn>169</mn></mfrac><mo>+</mo><mfrac><mn>20</mn><mn>169</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>5</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mfenced><mrow><mfrac><mrow><mo>-</mo><mn>42</mn></mrow><mn>169</mn></mfrac><mo>+</mo><mfrac><mn>55</mn><mn>169</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>14</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mn>56</mn><mn>169</mn></mfrac><mo>-</mo><mfrac><mn>121</mn><mn>169</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>13</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">C</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mn>2</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>2</mn><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>13</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">C</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>13</mn><mrow><mn>13</mn><mo>&#xD7;</mo><mn>13</mn></mrow></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">C</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>169</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>39</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>65</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mfenced><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>169</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mn>26</mn></mtd><mtd><mo>-</mo><mn>39</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mo>-</mo><mn>65</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

So (adj A)-1 = adj (A-1)   (Hence Proved....)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mfenced><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math>

⇒ |A-1| = -13

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mfenced><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mfrac><mrow><mo>-</mo><mn>13</mn></mrow><mn>13</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mfenced><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mfenced><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

So (A-1)-1 = A  (Hence Proved……….)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">9</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Evaluate</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>+</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><mo>-</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mrow></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi><mo>-</mo><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mfenced><mrow><mi>Expand</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mo>-</mo><mn>1</mn><mfenced open="{" close="}"><mrow><mfenced><mrow><mo>-</mo><mi>xy</mi><mo>+</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfenced></mrow></mfenced></math>

|A| = (2x+2y)(xy-x2-y2)

|A| = - 2(x+y)(x2+y2-xy)

We know that (x+y) (x2+y2-xy) = x3+y3

|A| = - 2(x3+y3)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">10</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Evaluate</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi>x</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>y</mi></mtd><mtd><mo>-</mo><mi>x</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mi>x</mi></mtd><mtd><mi>x</mi><mo>+</mo><mi>y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>-</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi><mfenced><mrow><mo>-</mo><mi mathvariant="normal">y</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>xy</mi></math>

* Exercises 11 to 15 are not in the revised syllabus 2020-21

16. Solve the system of the following equations

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mi mathvariant="normal">x</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi mathvariant="normal">y</mi></mfrac><mo>+</mo><mfrac><mn>10</mn><mi mathvariant="normal">z</mi></mfrac><mo>=</mo><mn>4</mn><mspace linebreak="newline"/><mfrac><mn>4</mn><mi mathvariant="normal">x</mi></mfrac><mo>-</mo><mfrac><mn>6</mn><mi mathvariant="normal">y</mi></mfrac><mo>+</mo><mfrac><mn>5</mn><mi mathvariant="normal">z</mi></mfrac><mo>=</mo><mn>1</mn><mspace linebreak="newline"/><mfrac><mn>6</mn><mi mathvariant="normal">x</mi></mfrac><mo>+</mo><mfrac><mn>9</mn><mi mathvariant="normal">y</mi></mfrac><mo>-</mo><mfrac><mn>20</mn><mi mathvariant="normal">z</mi></mfrac><mo>=</mo><mn>2</mn></math>

Solun:- Let 1/x = u; 1/y = v;  1/z = w;

Equations are:- 2u+3v+10w = 4

4u-6v+5w = 1

6u+9v-20w = 2

Solving these equations using matrix method:-

Represent these equations in matrix form:-  AX = B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">u</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">v</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">w</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

Cofactor = (-1)i+j Mij

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>75</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>110</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>72</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>150</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>100</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>75</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>30</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>24</mn></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>75</mn></mtd><mtd><mn>110</mn></mtd><mtd><mn>72</mn></mtd></mtr><mtr><mtd><mn>150</mn></mtd><mtd><mo>-</mo><mn>100</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>75</mn></mtd><mtd><mn>30</mn></mtd><mtd><mo>-</mo><mn>24</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>75</mn></mtd><mtd><mn>150</mn></mtd><mtd><mn>75</mn></mtd></mtr><mtr><mtd><mn>110</mn></mtd><mtd><mo>-</mo><mn>100</mn></mtd><mtd><mn>30</mn></mtd></mtr><mtr><mtd><mn>72</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>24</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mn>75</mn></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>110</mn></mrow></mfenced><mo>+</mo><mn>10</mn><mfenced><mn>72</mn></mfenced></math>

⇒ |A| = 1200

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>1200</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>75</mn></mtd><mtd><mn>150</mn></mtd><mtd><mn>75</mn></mtd></mtr><mtr><mtd><mn>110</mn></mtd><mtd><mo>-</mo><mn>100</mn></mtd><mtd><mn>30</mn></mtd></mtr><mtr><mtd><mn>72</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>24</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>1200</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>75</mn></mtd><mtd><mn>150</mn></mtd><mtd><mn>75</mn></mtd></mtr><mtr><mtd><mn>110</mn></mtd><mtd><mo>-</mo><mn>100</mn></mtd><mtd><mn>30</mn></mtd></mtr><mtr><mtd><mn>72</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>24</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>1200</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>600</mn></mtd></mtr><mtr><mtd><mn>400</mn></mtd></mtr><mtr><mtd><mn>240</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">u</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">v</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">w</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>5</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

⇒ x=2;  y=3;  z=5

17. If a,b,c are in A.P. , then the determinant

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">a</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">is</mi></math>

(A) 0     (B) 1     (C) x     (D) 2x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">a</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mfenced><mrow><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">R</mi><mn>2</mn></msub><mo>-</mo><msub><mi mathvariant="normal">R</mi><mn>3</mn></msub></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">b</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mn>2</mn></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mi mathvariant="normal">a</mi><mo>-</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">b</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mn>2</mn></mfenced><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mi mathvariant="normal">a</mi><mo>-</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">b</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">c</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>&#x2192;</mo><msub><mi mathvariant="normal">C</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub></mrow></mfenced></math>

(Expand by C1)

|A| = (2)[(-1){(2c-2b)-(c-a)}]

|A| = (-2)[c-2b+a]

Given a, b, c are in A.p. 2b=a+c

c-2b+a = 0

Hence |A| = 0

18. If x,y,z are non-zero real numbers, then the inverse of matrix

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">is</mi></math>

Solun:- We know that inverse of a matrix exists if the matrix is nonsingular i.e. |A| is not equal to zero.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mfenced><mrow><mi>yz</mi><mo>-</mo><mn>0</mn></mrow></mfenced><mo>=</mo><mi>xyz</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#x2260;</mo><mo>&#xA0;</mo><mn>0</mn><mo>&#xA0;</mo></math>

Hence inverse of matrix A exists.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>yz</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>xz</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>=</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>xy</mi></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>yz</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>xz</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>xy</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>yz</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>xz</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>xy</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mi>xyz</mi></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>yz</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>xz</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>xy</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi mathvariant="normal">x</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><mi mathvariant="normal">y</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><msup><mi mathvariant="normal">z</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

Answer is (A)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">19</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">where</mi><mo mathvariant="bold">&#xA0;</mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">&#x2264;</mo><mi mathvariant="bold">&#x3B8;</mi><mo mathvariant="bold">&#x2264;</mo><mn mathvariant="bold">2</mn><mi mathvariant="bold">&#x3C0;</mi><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Then</mi></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mrow></mfenced><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi><mfenced><mrow><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi><mo>+</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mo>&#x2264;</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi><mo>&#x2264;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>0</mn><mo>&#x2264;</mo><msup><mi>sin</mi><mn>2</mn></msup><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi><mo>&#x2264;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>1</mn><mo>&#x2264;</mo><mn>1</mn><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi><mo>&#x2264;</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mo>&#x2264;</mo><mn>2</mn><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B8;</mi></mrow></mfenced><mo>&#x2264;</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mo>&#x2264;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#x2264;</mo><mn>4</mn></math>

Det(A) ∈ [2,4]  (Answer is ……...D)


See Also:-

If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails

For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email

Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post