Miscellaneous Exercise
⇒ |A| = x(-x2-1)-sinθ(-xsinθ-cosθ)+cosθ(-sinθ+xcosθ)
⇒ |A| = -x3-x+xsin2θ+sinθcosθ-sinθcosθ+xcos2θ
⇒ |A| = -x3-x+xsin2θ+xcos2θ
⇒ |A| = -x3-x+x(sin2θ+cos2θ)
We know that sin2θ+cos2θ = 1
⇒ |A| = -x3-x+x
⇒ |A| = -x3
Hence determinant is independent of θ.
2. Without expanding the determinant, prove that
Solun:- Taking L.H.S:-
=R.H.S. (Hence Proved……)
⇒ |A| = cosαcosβ(cosαcosβ-0)-cosαsinβ(-cosαsinβ-0)-sinα(-sinαsin2β-sinαcos2β)
⇒ |A| = cos2αcos2β+cos2αsin2β+sin2α
⇒ |A| = cos2α(cos2β+sin2β)+sin2α
We know that cos2β+sin2β = 1
⇒ |A| = cos2α+sin2α
⇒ |A| = 1
4. If a,b and c are real numbers, and
Show that either a+b+c=0 or a=b=c.
⇒ 2(a+b+c)[1(a-b)(b-a)-(b-c)(a-c)] = 0
⇒ 2(a+b+c)[-(a-b)(a-b)-(b-c)(a-c)] = 0
⇒ 2(a+b+c)[-(a2+b2-2ab)-(ab-bc-ac+c2)] = 0
⇒ 2(a+b+c)[-b2-a2+2ab-ab+bc+ac-c2] = 0
⇒ 2(a+b+c)[-b2-a2+ab+bc+ac-c2] =0
So a+b+c =0
And -2b2-2a2+2ab+2bc+2ac-2c2 = 0
⇒ (a-b)2+(b-c)2+(c-a)2 = 0
Squares are non-negative
⇒ (a-b) = 0
⇒ (b-c) = 0
⇒ (c-a) = 0
So a=b=c
⇒ (3x+a)[1(0+a2)] = 0
⇒ x = -a/3 and a=0
Given a doesn’t equal to 0 then
⇒ x = -a/3
= abc[a(bc-ab-ac)-c(ac+bc-ab)+(a+c){(ab+ac+b2+bc)-b2}]
= abc[abc-a2b-a2c-ac2-bc2+abc+a2b+a2c+abc+abc+ac2+bc2]
= abc(4abc)
= 4a2b2c2
Cofactor = (-1)i+jMij
⇒ |B| = 1(3)-2(-1)-2(2) = 1
We know that (AB)-1 = B-1A-1
= (AB)-1
(i) [adj A]-1 = adj (A-1) (ii) (A-1)-1 = A
Solun:- We know that transpose of cofactor matrix is adjoint matrix.
Cofactor = (-1)i+jMij
⇒ |A| = 1(14)+2(-11)+1(-5) = -13
We know that A-1 = 1/|A| (adj A)
⇒ (adj A)-1 = 1/|adj A| [adj(adj A)]
⇒ (adj A)-1 = 1/|adj A| (adj B) …………....(3)
Calculating adj of adj A hence calculate adjoint of B:-
According to equation 3:-
⇒ (adj A)-1 = 1/|adj A| (adj B)
Calculating adjoint of A-1 hence adjoint of C:-
So (adj A)-1 = adj (A-1) (Hence Proved....)
⇒ |A-1| = -13
So (A-1)-1 = A (Hence Proved……….)
⇒ |A| = (2x+2y)(xy-x2-y2)
⇒ |A| = - 2(x+y)(x2+y2-xy)
We know that (x+y) (x2+y2-xy) = x3+y3
⇒ |A| = - 2(x3+y3)
* Exercises 11 to 15 are not in the revised syllabus 2020-21
16. Solve the system of the following equations
Solun:- Let 1/x = u; 1/y = v; 1/z = w;
Equations are:- 2u+3v+10w = 4
4u-6v+5w = 1
6u+9v-20w = 2
Solving these equations using matrix method:-
Represent these equations in matrix form:- AX = B
We know that X = A-1B
Cofactor = (-1)i+j Mij
⇒ |A| = 1200
⇒ x=2; y=3; z=5
17. If a,b,c are in A.P. , then the determinant
(A) 0 (B) 1 (C) x (D) 2x
(Expand by C1)
⇒ |A| = (2)[(-1){(2c-2b)-(c-a)}]
⇒ |A| = (-2)[c-2b+a]
Given a, b, c are in A.p. 2b=a+c
⇒ c-2b+a = 0
Hence |A| = 0
18. If x,y,z are non-zero real numbers, then the inverse of matrix
Solun:- We know that inverse of a matrix exists if the matrix is nonsingular i.e. |A| is not equal to zero.
Hence inverse of matrix A exists.
Answer is (A)
⇒ Det(A) ∈ [2,4] (Answer is ……...D)
Post a Comment
Comment me for any queries or topic which you want to learn