Important Note

Please turn desktop mode or rotate your mobile screen for better view
Exercise 3.3
1. Find the transpose of each of the following matrices:
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Solun</mi><mo>:</mo><mo>-</mo><mo>&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mi>Transpose</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>matrix</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>ii</mi><mo>)</mo></mrow></mstyle><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo mathvariant="bold">&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn mathvariant="bold">2</mn><mo mathvariant="bold">&#xD7;</mo><mn mathvariant="bold">2</mn></mrow></msub><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>iii</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><msqrt><mn>3</mn></msqrt></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><msqrt><mn>3</mn></msqrt></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><msqrt><mn>3</mn></msqrt></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">2</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mi mathvariant="bold">and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mspace linebreak="newline"/><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">i</mi><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">&#xA0;</mo><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">+</mo><mi mathvariant="bold">B</mi><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">'</mo><mo mathvariant="bold">=</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mo mathvariant="bold">+</mo><mi mathvariant="bold">B</mi><mo mathvariant="bold">'</mo><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>And</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking L.H.S:-(A+B)’
Order of A = Order of B
So the addition of matrix A and B
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mi>then</mi><mo>&#xA0;</mo><mi>transpose</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking R.H.S:- A’+B’
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>2</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>+</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>
L.H.S = R.H.S (Hence Proved……)
(ii) (A-B)’ = A’-B’
Solun:- Taking L.H.S:- (A-B)’
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking R.H.S:- A’-B’
From Eq.1 and 2:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>-</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
L.H.S = R.H.S (Hence Proved…....)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">3</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn><mo>&#xA0;</mo></mrow></msub><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mspace linebreak="newline"/><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">i</mi><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">&#xA0;</mo><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">+</mo><mi mathvariant="bold">B</mi><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">'</mo><mo mathvariant="bold">=</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mo mathvariant="bold">+</mo><mi mathvariant="bold">B</mi><mo mathvariant="bold">'</mo></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn><mo>&#xA0;</mo><mo>&#xA0;</mo></mrow></msub><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>2</mn></mfenced></math>
Taking L.H.S:- (A+B)’
From Eq. 1 and 2:- 
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Taking R.H.S:- A’+B’
From Eq. 1 and 2:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>+</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
L.H.S = R.H.S (Hence Proved……)
(ii) (A-B)’ = A’ - B’
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>-</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math> 
So, L.H.S=R.H.S (Hence Proved…....)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mo>&#xA0;</mo><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>,</mo><mo>&#xA0;</mo><mi>then</mi><mo>&#xA0;</mo><mi>find</mi><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>.</mo></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">B</mi></mrow></mfenced><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
5.  For the matrices A and B, verify that (AB)’=B’A’, where
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>AB</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfenced><mi>AB</mi></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
So (AB)’ = B’A’ (Hence Proved……)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math>
 <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>AB</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>10</mn></mtd><mtd><mn>14</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfenced><mi>AB</mi></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>14</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>14</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
So (AB)’ = B’A’ (Hence Proved……)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">6</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">=</mo><mi mathvariant="bold">I</mi></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;sin&#x3B1;</mi><mo>-</mo><mi>cos&#x3B1;sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>cos&#x3B1;sin&#x3B1;</mi><mo>-</mo><mi>cos&#x3B1;sin&#x3B1;</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><mi mathvariant="normal">I</mi></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>ii</mi><mo>)</mo></mrow></mstyle><mo>&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">=</mo><mi mathvariant="bold">I</mi></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;sin&#x3B1;</mi><mo>-</mo><mi>cos&#x3B1;sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>cos&#x3B1;sin&#x3B1;</mi><mo>-</mo><mi>cos&#x3B1;sin&#x3B1;</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><mi mathvariant="normal">I</mi></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">7</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mstyle><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">a</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">symmetric</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo mathvariant="bold">.</mo></math>
Solun:- For symmetric matrix A=A’
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
 So, A’=A 
Thus, A is a symmetric matrix.   
<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>ii</mi><mo>)</mo></mrow></mstyle><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">a</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">skewsymmetric</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo mathvariant="bold">.</mo></math>
Solun:- For skew-symmetric matrix A = - A’
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
 So, A’ = - A 
Thus, A is a skew-symmetric matrix.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">8</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">For</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">verify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi></math>
(i) (A+A’) is a symmetric matrix
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>14</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>14</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So (A+A’) = transpose of (A+A’) = (A+A’)’
So, (A+A’) is a symmetric matrix.
(ii) (A-A)’ is a skew-symmetric matrix
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>'</mo><mo>=</mo><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So (A-A’) = - transpose of (A-A’) = - (A-A’)’
So, (A-A’) is a skew-symmetric matrix.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mo>&#xA0;</mo><mi>Find</mi><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mo>,</mo><mo>&#xA0;</mo><mi>when</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">b</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">c</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">b</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">c</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi mathvariant="normal">a</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi mathvariant="normal">c</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">c</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mo>&#xA0;</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>'</mo></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>A</mi><mo>-</mo><mi>A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi>a</mi></mtd><mtd><mn>2</mn><mi>b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>a</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi>c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>b</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>c</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>A</mi><mo>-</mo><mi>A</mi><mo>'</mo></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi>a</mi></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>a</mi></mtd><mtd><mn>0</mn></mtd><mtd><mi>c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>b</mi></mtd><mtd><mo>-</mo><mi>c</mi></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So, P=P’ then P is a symmetric matrix.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So Q = - Q’ then Q is a skew symmetric matrix.
Representation of A in P and Q form
A=P+Q
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>12</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mspace linebreak="newline"/><mspace linebreak="newline"/></math>
So, P=P’ then P is a symmetric matrix.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
So Q = - Q’ then Q is a skew symmetric matrix.
Representation of A in P and Q form
A=P+Q
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>iii</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mo>=</mo><mi mathvariant="normal">P</mi><mo>'</mo><mo>&#xA0;</mo><mi>then</mi><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>symmetric</mi><mo>&#xA0;</mo><mi>matrix</mi></mrow></mfenced><mspace linebreak="newline"/><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>5</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>5</mn><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
So Q = - Q’ then Q is a skew symmetric matrix.
Representation of A in P and Q form
A=P+Q
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>5</mn><mn>2</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>iv</mi></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">P</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So, P=P’ then P is a symmetric matrix.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">A</mi><mo>'</mo></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Q</mi><mo>'</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So Q = - Q’ then Q is a skew symmetric matrix.
Representation of A in P and Q form
A=P+Q
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
Choose the correct answer in the Exercise 11 and 12.
11. If A and B are symmetric matrices of same order, then AB-BA is a
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Solun:- Given A and B are symmetric matrix
Then A=A’
⇒ B=B’
⇒ (AB-BA)’ = (AB)’ - (BA)’  {We know (A-B)’=A’ - B’ }
⇒ (AB-BA)’ = B’A’ - A’B’      {We know (AB)’ = B’A’}
⇒ (AB-BA)’ = BA - AB   (Given)
⇒ (AB-BA)’ = - (AB-BA)
So, (AB - BA) is the skew-symmetric matrix.
Answer is:- A
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">12</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos&#x3B1;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>sin&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">then</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">+</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">=</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">I</mi><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">if</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">value</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">&#x3B1;</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo></math>
(A)Ï€/6  (B) Ï€/3  (C) Ï€ (D) 3Ï€/2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos&#x3B1;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>sin&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos&#x3B1;</mi></mtd><mtd><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>'</mo><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>cos&#x3B1;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><mi mathvariant="normal">I</mi><mspace linebreak="newline"/><mfenced><mrow><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">I</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>identity</mi><mo>&#xA0;</mo><mi>matrix</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>second</mi><mo>&#xA0;</mo><mi>order</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>cos&#x3B1;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>Comaring</mi><mo>&#xA0;</mo><mi>corresponding</mi><mo>&#xA0;</mo><mi>elements</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mi>cos&#x3B1;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>cos&#x3B1;</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>cos&#x3B1;</mi><mo>=</mo><mi>cos</mi><mfenced><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>3</mn></mfrac></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">&#x3B1;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>3</mn></mfrac><mspace linebreak="newline"/></math>(Answer is ……B)


See also:- 

If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails

For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email

Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post