Exercise 5.6
If x and y are connected parametrically by the equation given in Exercises 1 to 10 without eliminating the parameter. Find dy/dx.
1. x = 2at2 , y = at4
Solun:- Given x = 2at2 , y = at4
⇒ x = 2at2
Differentiate w.r.t. x:-
⇒ y = at4
Differentiate w.r.t. x:-
Divide 2 by 1:-
2. x = acos θ , y = bcos θ
Solun:- Given x = acos θ , y = bcos θ
⇒ x = acos θ
Differentiate w.r.t. x:-
⇒ y = bcos θ
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
3. x = sin t , y = cos 2t
Solun:- Given x = sin t , y = cos 2t
⇒ x = sin t
Differentiate w.r.t. x:-
⇒ y = cos 2t
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
4. x = 4t , y = 4/t
Solun:- Given x = 4t , y = 4/t
⇒ x = 4t
Differentiate w.r.t. x:-
⇒ y = 4/t
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
5. x = cos θ - cos 2θ , y = sin θ - sin 2θ
Solun:- Given x = cos θ - cos 2θ , y = sin θ - sin 2θ
⇒ x = cos θ - cos 2θ
Differentiate w.r.t. x:-
⇒ y = sin θ - sin 2θ
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
6. x = a(θ - sin θ) , y = a(1 + cos θ)
Solun:- Given x = a(θ - sin θ) , y = a(1 + cos θ)
⇒ x = a(θ - sin θ)
Differentiate w.r.t. x:-
⇒ y = a(1 + cos θ)
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
Solun:- Given
Differentiate w.r.t. x:-
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
We know that cos 2x = 2cos2x-1
And cos 2x = 1 - 2sin2x
We know that cos 3x = 4cos3x - 3cos x
And sin 3x = 3sinx - 4sin3x
Solun:- Given
Differentiate w.r.t. x:-
y=a.sint t
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
9. x = a.sec θ , y = b.tan θ
Solun:- Given x = a.sec θ , y = b.tan θ
⇒x = a.sec θ
Differentiate w.r.t. x:-
⇒ y = b.tan θ
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
10. x = a(cos θ + θsin θ) , y = a(sin θ - θcos θ)
Solun:- Given x = a(cos θ + θsin θ) , y = a(sin θ - θcos θ)
⇒ x = a(cos θ + θsin θ)
Differentiate w.r.t. x:-
⇒ y = a(sin θ - θcos θ)
Differentiate w.r.t. x:-
Divide eq 2 by 1:-
11. If , show that dy/dx = -y/x
Solun:- Given
We know that sin-1t + cos-1t = π/2
Differentiate x w.r.t. x:-
Hence Proved
Post a Comment
Comment me for any queries or topic which you want to learn