Important Note

Please turn desktop mode or rotate your mobile screen for better view

Miscellaneous Exercise Chapter 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">1</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="bold">show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><msup><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">aI</mi><mo mathvariant="bold">+</mo><mi mathvariant="bold">bA</mi><mo mathvariant="bold">)</mo></mrow><mi mathvariant="bold">n</mi></msup><mo mathvariant="bold">=</mo><msup><mi mathvariant="bold">a</mi><mi mathvariant="bold">n</mi></msup><mi mathvariant="bold">I</mi><mo mathvariant="bold">+</mo><msup><mi mathvariant="bold">na</mi><mrow><mi mathvariant="bold">n</mi><mo mathvariant="bold">-</mo><mn mathvariant="bold">1</mn></mrow></msup><mi mathvariant="bold">bA</mi><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">where</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">I</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">identity</mi><mo mathvariant="bold">&#xA0;</mo><mspace linebreak="newline"/><mi mathvariant="bold">matrix</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">order</mi><mo mathvariant="bold">&#xA0;</mo><mn mathvariant="bold">2</mn><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">and</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">n</mi><mo mathvariant="bold">&#x2208;</mo><mi mathvariant="bold">N</mi><mo mathvariant="bold">.</mo><mspace linebreak="newline"/></math>
Solun:- Given Eq. is (aI+bA)n=anI+nan-1bA
Using mathematical induction:-
Put n=1:-
Thus, given eq. is true for every nN.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mo>&#xA0;</mo><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo>&#xA0;</mo><mi>prove</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mi mathvariant="normal">n</mi></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd><mtd><msup><mn>3</mn><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></msup></mtd></mtr></mtable></mfenced><mo>,</mo><mi mathvariant="normal">n</mi><mo>&#x2208;</mo><mi mathvariant="normal">N</mi><mo>.</mo></math>
Solun:- Using mathematical induction:-
Put n=1:-

is true for every nN.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">3</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo>&#xA0;</mo><mi>then</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mi mathvariant="normal">n</mi></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mn>2</mn><mi mathvariant="normal">n</mi></mtd><mtd><mo>-</mo><mn>4</mn><mi mathvariant="normal">n</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">n</mi></mtd><mtd><mn>1</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">n</mi></mtd></mtr></mtable></mfenced><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">where</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">n</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">any</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">positive</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">integer</mi><mo mathvariant="bold">.</mo></math>
Solun:- Using mathematical induction:-
Thus, given eq. is true for every positive integer.
4. If A and B are symmetric matrices, prove that AB-BA is a skew-symmetric matrix.
Solun:- Given A and B are symmetric matrix
Then A=A’
⇒ B=B’
⇒ (AB-BA)’ = (AB)’ - (BA)’  {We know (A-B)’=A’ - B’ }
⇒ (AB-BA)’ = B’A’ - A’B’      {We know (AB)’ = B’A’}
⇒ (AB-BA)’ = BA - AB   (Given)
⇒ (AB-BA)’ = - (AB-BA)
So, (AB - BA) is the skew-symmetric matrix.
5. Show that the matrix B’AB is symmetric or skew-symmetric matrix according as A is symmetric or skew-symmetric.
Solun:- Given matrix is B’AB
⇒ (B’AB)’ = (AB)’(B’)’
We know (AB)’ = B’A’ and (B’)’ = B
⇒ (B’AB)’ = B’ A’ B
(i) If A is symmetric matrix then A=A’
⇒ (B’AB)’ = B’AB 
So, if A is a symmetric matrix then (B’AB)’ is also a symmetric matrix.
(ii) If A is skew-symmetric matrix then A’ = - A
⇒ (B’AB)’ = B’(- A)B
⇒ (B’AB)’ = -B’AB
So, if A is a skew-symmetric matrix then (B’AB)’ is also a skew-symmetric matrix.
6. Find the values of x, y, z if the matrix 
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">z</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">stasify</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">equation</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">'</mo><mi mathvariant="bold">A</mi><mo mathvariant="bold">=</mo><mi mathvariant="bold">I</mi><mo mathvariant="bold">.</mo></math>
The order of both the matrices is the same then compare corresponding elements.
⇒ 4y2+z2 = 1   ………(1)
⇒ 2y2-z2 = 0    (By elimination method)
⇒ 6y2 =1
⇒ y2 = 1/6
Put the value of y in eq. 1:-
⇒ 4/6+z2 = 1
⇒ z2 = 1/3
And x2+y2+z2 = 1
Put the values of y and z:-
⇒ x2 + 1/6 + 1/3 =1
⇒ x2 = 1/2
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xB1;</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xB1;</mo><mfrac><mn>1</mn><msqrt><mn>6</mn></msqrt></mfrac><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">z</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xB1;</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">7</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">For</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">what</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">values</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">x</mi><mo mathvariant="bold">:</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi mathvariant="normal">O</mi><mo>?</mo></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>1</mn></mtd><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi></math>

⇒ 4x+4 = 0
⇒ x = -4/4 = -1
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">8</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><msup><mi mathvariant="bold">A</mi><mn mathvariant="bold">2</mn></msup><mo mathvariant="bold">-</mo><mn mathvariant="bold">5</mn><mi mathvariant="bold">A</mi><mo mathvariant="bold">+</mo><mn mathvariant="bold">7</mn><mi mathvariant="bold">I</mi><mo mathvariant="bold">=</mo><mn mathvariant="bold">0</mn></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xD7;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>8</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Given</mi><mo>&#xA0;</mo><mi>eq</mi><mo>.</mo><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi mathvariant="normal">A</mi><mo>+</mo><mn>7</mn><mi mathvariant="normal">I</mi><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mi>Taking</mi><mo>&#xA0;</mo><mi mathvariant="normal">L</mi><mo>.</mo><mi mathvariant="normal">H</mi><mo>.</mo><mi mathvariant="normal">S</mi><mo>&#xA0;</mo><mo>:</mo><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>8</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mn>5</mn><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mn>7</mn><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>8</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>15</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi></math>
L.H.S = R.H.S (Hence Proved……)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mo>&#xA0;</mo><mi>Find</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><mi mathvariant="normal">O</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>40</mn><mo>+</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>48</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>48</mn><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>48</mn><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msqrt><mn>48</mn></msqrt><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>&#xB1;</mo><mn>4</mn><msqrt><mn>3</mn></msqrt></math>
10. A manufacturer produces three products x,y,z which he sells in two markets. Annual sales are indicated below:

Market
Products
I
10,000
2,000
18,000
II
6,000
20,000
8,000

(a) If unit sales prices of x,y, and z  are Rs 2.50, Rs 1.50 and Rs 1.00 respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are Rs 2.00, Rs 1.00, and 50 paise respectively. Find the gross profit.
Solun:- Total revenue is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10000</mn></mtd><mtd><mn>2000</mn></mtd><mtd><mn>18000</mn></mtd></mtr><mtr><mtd><mn>6000</mn></mtd><mtd><mn>20000</mn></mtd><mtd><mn>8000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>.</mo><mn>50</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>50</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>00</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Revenue</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10000</mn></mtd><mtd><mn>2000</mn></mtd><mtd><mn>18000</mn></mtd></mtr><mtr><mtd><mn>6000</mn></mtd><mtd><mn>20000</mn></mtd><mtd><mn>8000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xD7;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>.</mo><mn>50</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>50</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>00</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Revenue</mi><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>25000</mn><mo>+</mo><mn>3000</mn><mo>+</mo><mn>18000</mn></mtd></mtr><mtr><mtd><mn>15000</mn><mo>+</mo><mn>30000</mn><mo>+</mo><mn>8000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Revenue</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>46000</mn></mtd></mtr><mtr><mtd><mn>53000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
Total revenue:-Market I = Rs 46000
Market II = Rs 53000
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>.</mo><mn>00</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>00</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>50</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Cost</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10000</mn></mtd><mtd><mn>2000</mn></mtd><mtd><mn>18000</mn></mtd></mtr><mtr><mtd><mn>6000</mn></mtd><mtd><mn>20000</mn></mtd><mtd><mn>8000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xD7;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>.</mo><mn>00</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>00</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>50</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Cost</mi><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>20000</mn><mo>+</mo><mn>2000</mn><mo>+</mo><mn>9000</mn></mtd></mtr><mtr><mtd><mn>12000</mn><mo>+</mo><mn>20000</mn><mo>+</mo><mn>4000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Cost</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>31000</mn></mtd></mtr><mtr><mtd><mn>36000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Gross</mi><mo>&#xA0;</mo><mi>Profit</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Revenue</mi><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mi>Total</mi><mo>&#xA0;</mo><mi>Cost</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Gross</mi><mo>&#xA0;</mo><mi>profit</mi><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>46000</mn></mtd></mtr><mtr><mtd><mn>53000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>31000</mn></mtd></mtr><mtr><mtd><mn>36000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>15000</mn></mtd></mtr><mtr><mtd><mn>17000</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
Gross Profit:-
Market I = Rs 15000
Market II = Rs 17000
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">11</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Find</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">X</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">so</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math>
Solun:- For multiplication of X and left side matrix:-
No. of columns of X = No. of rows of left side matrix
⇒ No. of columns of X = 2
⇒ No. of rows of X = No. of rows of right side matrix
⇒ No. of rows of X = 2
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">d</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi></mtd><mtd><mi mathvariant="normal">d</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xD7;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">a</mi><mo>+</mo><mn>4</mn><mi mathvariant="normal">b</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>5</mn><mi mathvariant="normal">b</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>6</mn><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">c</mi><mo>+</mo><mn>4</mn><mi mathvariant="normal">d</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">c</mi><mo>+</mo><mn>5</mn><mi mathvariant="normal">d</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">c</mi><mo>+</mo><mn>6</mn><mi mathvariant="normal">d</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
⇒ a+4b = -7 ………....(1)
⇒ 3a+6b = -9
⇒ a+2b = -3     (By elimination method)
⇒ 2b = -4
⇒ b = -2
Put the value of b in eq. 1:-
⇒ a = 1
⇒ c+4d = 2 ……....(2)
⇒ 3c+6d = 6
⇒ c+2d=2     (By elimination method)
⇒ 2d = 0
⇒ d =0
Put the value of d in eq. 2:-
⇒ c=2
⇒ a=1, b=-2, c=2, d=0
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
12. If A and B are square matrices of the same order such that AB = BA, then prove
by induction that ABn = BnA. Further prove that (AB)n = AnBn for all nN.
Solun:- Given AB=BA
Using mathematical induction:-
Put n=1:-
ABn=BnA
⇒ AB=BA (True)
Put n=k:-
ABk=BkA (True) ………(1)
Prove:- Put n = k+1
ABk+1=Bk+1A ………....(2)
Taking L.H.S:
= ABk+1
= ABkxB   (From Eq. 1)
= BkAxB
= BkBA   (Given AB = BA)
Bk+1A=R.H.S  (Hence Proved) 
⇒ (AB)n=(AnBn)
Using mathematical induction:-
Put n=1:-
⇒ AB=BA (True)
Put n=k:-
⇒ (AB)k=AkBk (True) ………(3)
Prove:- Put n = k+1
⇒ (AB)k+1=Ak+1Bk+1
Taking L.H.S:
= (AB)k+1
= (AB)k x AB   (From Eq. 3)
= AkBk x AB
= AkBkx BA  (Given AB = BA)
= AkBk+1A  (From eq. 2)
= AkABk+1
= Ak+1Bk+1 (Hence Proved……....)
Hence these equations satisfy nN.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mo>&#xA0;</mo><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi mathvariant="normal">&#x3B2;</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">&#x3B3;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>such</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><mi mathvariant="normal">I</mi><mo>,</mo><mi>then</mi><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">A</mi></mfenced><mo>&#xA0;</mo><mn>1</mn><mo>+</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>+</mo><mi>&#x3B2;&#x3B3;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">B</mi></mfenced><mo>&#xA0;</mo><mn>1</mn><mo>-</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">&#x3B2;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">C</mi></mfenced><mo>&#xA0;</mo><mn>1</mn><mo>-</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>-</mo><mi>&#x3B2;&#x3B3;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mfenced><mi mathvariant="normal">D</mi></mfenced><mo>&#xA0;</mo><mn>1</mn><mo>+</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>-</mo><mi mathvariant="normal">&#x3B2;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi mathvariant="normal">&#x3B2;</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">&#x3B3;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi mathvariant="normal">&#x3B2;</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">&#x3B3;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xD7;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">&#x3B1;</mi></mtd><mtd><mi mathvariant="normal">&#x3B2;</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">&#x3B3;</mi></mtd><mtd><mo>-</mo><mi mathvariant="normal">&#x3B1;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>+</mo><mi>&#x3B2;&#x3B3;</mi></mtd><mtd><mi>&#x3B1;&#x3B2;</mi><mo>-</mo><mi>&#x3B2;&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>&#x3B1;&#x3B3;</mi><mo>-</mo><mi>&#x3B1;&#x3B3;</mi></mtd><mtd><mi>&#x3B2;&#x3B3;</mi><mo>+</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">I</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math> (Given A2 = I)
The order of both the matrices is the same then compare corresponding elements.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>+</mo><mi>&#x3B2;&#x3B3;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>1</mn><mo>-</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></msup><mo>-</mo><mi>&#x3B2;&#x3B3;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>
The answer is ...C
14. If the matrix A is both symmetric and skew-symmetric, then:
(A) A is a diagonal matrix  
(B) A is a zero matrix
(C) A is a square matrix  
(D) None of these
Solun:- Given A is symmetric matrix A’=A …….......(1)
A is the skew-symmetric matrix A’=-A  …………....(2)
From Eq. 1 and 2:-
⇒ A = -A
⇒ 2A = 0
⇒ A = 0
Then A is a zero matrix.
Answer is…B
15. If A is square matrix such that A2 = A, then (I+A)3-7A is equal to:-
(A) A
(B) I-A
(C) I
(D) 3A
Solun:- Given eq. is (I+A)3-7A
We know (A+B)3 = A3+B3+3AB(A+B)
= (I+A)3-7A
= I3+A3+3AI(A+I)-7A
= I+A2A+3A(A+I)-7A  (We know I3=I and AI = A) 
= I+AA+3A2+3AI -7A   (Given A2=A)
= I+A+3A+3A-7A
= I+7A-7A
=I

Answer is……C


See also:- Exercise 3.3


If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails
For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email

Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post