Important Note

Please turn desktop mode or rotate your mobile screen for better view

 Exercise 5.1

1. Prove that the function f(x) = 5x-3 is continuous at x = 0, at x = -3 and at x = 5.

Solun:- Given function is f(x) = 5x-3

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mrow><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced></mrow><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mfenced><mrow><mn>5</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x=0

= -3

Put x=0 in given function:-

⇒ f(0) = -3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mn>0</mn></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><mn>3</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><mn>3</mn></mrow></munder><mfenced><mrow><mn>5</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x = -3

= -18

Put x = -3 in given function:-

⇒ f(-3) = -18

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><mn>3</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>5</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>5</mn></mrow></munder><mfenced><mrow><mn>5</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x = 5

= 22

Put x = 5 in given function:-

⇒ f(5) = 22

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>5</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mn>5</mn></mfenced></math>

Hence f(x) is continuous at x=0,at x=-3 and at x=5.

2. Examine the continuity of the function f(x) = 2x2-1 at x = 3.

Solun:- Given function is f(x) = 2x2-1

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>3</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>3</mn></mrow></munder><mfenced><mrow><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math>

Put x=3

= 17

Put x=3 in given function:-

⇒ f(3) = 17

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>3</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mn>3</mn></mfenced></math>

Hence f is continuous at x=3.

3. Examine the following functions for continuity. 

(a) f(x) = x-5

Solun:- Given function is f(x) = x-5

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>

Put x=k

= k-5

Put x=k in given function:-

⇒ f(k) = k-5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all real numbers.

(b) f(x) = 1/(x-5),  x 5

Solun:- Given function is f(x) = 1/(x-5)

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfrac><mn>1</mn><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></mfrac></math>

Put x=k

= 1/(k-5)

Put x=k in given function:-

⇒ f(k) = 1/(k-5)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all real numbers except x=5.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>25</mn></mrow><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mo>-</mo><mn>5</mn></math>

Solun:- Given function is f(x) = x2-25 / (x+5)

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfrac><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>25</mn></mrow><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></mfrac><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfrac><mrow><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></mrow><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></mfrac><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>

Put x=k

= (k-5)

Put x=k in given function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi mathvariant="normal">k</mi><mn>2</mn></msup><mo>-</mo><mn>25</mn></mrow><mrow><mi mathvariant="normal">k</mi><mo>+</mo><mn>5</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi mathvariant="normal">k</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi mathvariant="normal">k</mi><mo>+</mo><mn>5</mn></mrow></mfenced></mrow><mrow><mi mathvariant="normal">k</mi><mo>+</mo><mn>5</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced><mo>=</mo><mfenced><mrow><mi mathvariant="normal">k</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all real numbers except x = -5.

(d) f(x) = |x-5|

Solun:- Given function is f(x) = |x-5|

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>5</mn><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Case 1: k>5

⇒ f(x) = x-5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>

Put x=k

= (k-5)

Put x=k in given function:-

⇒ f(k) = (k-5)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Case 2: k=5

⇒ f(x) = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>0</mn></math>

Put x=k

= 0

Put x=k in given function:-

⇒ f(k) = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Case 3: k<5

⇒ f(x) = 5-x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>real</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>5</mn><mo>-</mo><mi mathvariant="normal">x</mi></mrow></mfenced></math>

Put x=k

= 5-k

Put x=k in given function:-

⇒ f(k) = 5-k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all real numbers.

4. Prove that the function f(x) = xn is continuous at x=n, where n is a positive integer.

Solun:- Given function is f(x) = xn

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">n</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>Here</mi><mo>&#xA0;</mo><mi mathvariant="normal">n</mi><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi mathvariant="normal">a</mi><mo>&#xA0;</mo><mi>positive</mi><mo>&#xA0;</mo><mi>number</mi><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">n</mi></mrow></munder><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mi mathvariant="normal">n</mi></msup></math>

Put x=n

= nn

Put x=n in given function:-

⇒ f(n) = nn

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all positive integers.

5. Is the function f defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

continuous at x = 0? At x = 1? At x = 2?

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

At x=0

f(x) = x

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ f(0) = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mn>0</mn></mfenced></math>

Hence f is continuous at x=0.

At x = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x = 1

= 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>5</mn></math>

Put x = 1

= 5

Because, R.H.L ≠ L.H.L

So, f is not continuous at k=1.

Hence, f is discontinuous at x=1.

At x = 2

f(x) = 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>2</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>2</mn></mrow></munder><mo>&#xA0;</mo><mn>5</mn></math>

Put x = 2

= 5

Put x=2 in given function:-

⇒ f(2) = 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>2</mn></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mn>2</mn></mfenced></math>

f is continuous at x=2.

Hence f is continuous at x=0 and x=2 but not continuous at x=1.

Find all points of discontinuity of f, where f is defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">6</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k<2

⇒ f(x) = 2x+3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math>

Put x=k

= 2k+3

Put x=k in given function:-

⇒ f(k) = 2k+3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k<2.

Case 2: k > 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x=k

= 2k-3

Put x=k in given function:-

⇒ f(k) = 2k-3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k>2.

Case 3: k = 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math>

Put x=2

= 7

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>2</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x=2

= 1

Because, R.H.L ≠ L.H.L

So, f is not continuous at k=2.

Hence, f is discontinuous at x=2.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">7</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mo>-</mo><mn>3</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>|</mo><mi mathvariant="normal">x</mi><mo>|</mo><mo>+</mo><mn>3</mn><mo>=</mo><mo>-</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mo>-</mo><mn>3</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < - 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></math>

Put x=k

= - k+3

Put x=k in given function:-

⇒ f(k) = - k+3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < - 3.

Case 2: - 3 < k < 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=k

= - 2k

Put x=k in given function:-

⇒ f(k) = - 2k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that - 3 < k < 3.

Case 3: k > 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></math>

Put x=k

= 6k+2

Put x=k in given function:-

⇒ f(k) = 6k+2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 3.

Case 4: k = - 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mn>3</mn></math>

Put x = - 3

= 6

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x = - 3

= 6

Put the value of x in given Eq.

f(-3) = 6

Hence f is continuous at k = - 3.

Case 5: k = 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></math>

Put x=3

= 20

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=3

= - 6

Because R.H.L ≠ L.H.L

So, f is not continuous at k=3.

Hence, f is discontinuous at x=3.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">8</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mo>|</mo><mi mathvariant="normal">x</mi><mo>|</mo></mrow><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mo>|</mo><mi mathvariant="normal">x</mi><mo>|</mo></mrow><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k > 0

⇒ f(x) = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>1</mn></math>

Put x=k

= 1

Put x=k in given function:-

⇒ f(k) = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 0.

Case 2: k < 0

⇒ f(x) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=k

= - 1

Put x=k in given function:-

⇒ f(k) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 0.

Case 3: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>1</mn></math>

Put x=0

= 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=0

= - 1

Because R.H.L ≠ L.H.L

So, f is not continuous at k=0.

Hence, f is discontinuous at x=0.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">9</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mi mathvariant="normal">x</mi><mrow><mo>|</mo><mi mathvariant="normal">x</mi><mo>|</mo></mrow></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mi mathvariant="normal">x</mi><mrow><mo>|</mo><mi mathvariant="normal">x</mi><mo>|</mo></mrow></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 0

⇒ f(x) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=k

= - 1

Put x=k in given function:-

⇒ f(k) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 0.

Case 2: k > 0

⇒ f(x) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=k

= - 1

Put x=k in given function:-

⇒ f(k) = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 0.

Case 3: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=0

= - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>

Put x=0

= - 1

Put x=0 in given function:-

⇒ f(0) = - 1

Because R.H.L = L.H.L = f(0)

So, f is continuous at x=0.

Hence there is no point of discontinuity.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">10</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 1

⇒ f(x) = x2+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= k2+1

Put x=k in given function:-

⇒ f(k) = k2+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 1.

Case 2: k > 1

⇒ f(x) = x+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= k+1

Put x=k in given function:-

⇒ f(k) = k+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 1.

Case 3: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=1

= 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=1

= 2

Put x=1 in given function:-

⇒ f(1) = 2

Because R.H.L = L.H.L = f(0)

So, f is continuous at x=1.

Hence there is no point of discontinuity.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">11</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 2   ⇒ f(x) = x3-3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x=k

= k3 - 3

Put x=k in given function:-

⇒ f(k) = k3 - 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 2.

Case 2: k > 2

⇒ f(x) = x2+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= k2+1

Put x=k in given function:-

⇒ f(k) = k2+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 2.

Case 3: k = 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=2

= 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn></mrow></mfenced></math>

Put x=2

= 5

Put x=2 in given function:-

⇒ f(2) = 5

Because R.H.L = L.H.L = f(0)

So, f is continuous at x=2.

Hence there is no point of discontinuity.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">12</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>10</mn></msup><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>10</mn></msup><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 1   ⇒ f(x) = x10 - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>10</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= k10 - 1

Put x=k in given function:-

⇒ f(k) = k10 - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 1.

Case 2: k > 1

⇒ f(x) = x2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></math>

Put x=k

= k2

Put x=k in given function:-

⇒ f(k) = k2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 1.

Case 3: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></mfenced></math>

Put x=1

= 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>10</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math>

Put x=1

= 0

Because R.H.L ≠ L.H.L

So, f is not continuous at x=1.

Hence f is discontinuous at x=1.

13. Is the function defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

a continuous function?

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 1   

⇒ f(x) = x + 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math>

Put x=k

= k+5

Put x=k in given function:-

⇒ f(k) = k+5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 1.

Case 2: k > 1

⇒ f(x) = x-5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></math>

Put x=k

= k - 5

Put x=k in given function:-

⇒ f(k) = k - 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 1.

Case 3: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>

Put x=1

= -4

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math>

Put x=1

= 6

Because R.H.L ≠ L.H.L

So, f is not continuous at x=1.

Hence f is discontinuous at x=1.

Discuss the continuity of the function f, where f is defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">14</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>1</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>3</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>10</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>1</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>3</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>10</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: 0 k < 1   ⇒ f(x) = 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>3</mn></math>

Put x=k

= 3

Put x=k in given function:-

⇒ f(k) = 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that 0 k < 1.

Case 2: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>3</mn></math>

Put x=1

= 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>4</mn></math>

Put x=1

= 4

Because R.H.L ≠ L.H.L

So, f is not continuous at x=1.

Hence f is discontinuous at x=1.

Case 3: 1 < k < 3

⇒ f(x) = 4

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>4</mn></math>

Put x=k

= 4

Put x=k in given function:-

⇒ f(k) = 4

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that 1 < k < 3.

Case 4: k = 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>4</mn></math>

Put x=3

= 4

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>5</mn></math>

Put x=3

= 5

Because R.H.L ≠ L.H.L

So, f is not continuous at x=3.

Hence f is discontinuous at x=3.

Case 5: 3 < k 10

⇒ f(x) = 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>5</mn></math>

Put x=k

= 5

Put x=k in given function:-

⇒ f(k) = 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

So, f is continuous at all points k, such that 3 < k 10.

Hence f is discontinuous at x=1 and x=3.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">15</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>0</mn><mo>&#x2264;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k<0   ⇒ f(x) = 2x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=k

= 2k

Put x=k in given function:-

⇒ f(k) = 2k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 0.

Case 2: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>0</mn></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ f(k) = 0

Because R.H.L = L.H.L = f(0)

Hence f is continuous at x=0.

Case 3: 0 < k < 1

⇒ f(x) = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>0</mn></math>

Put x=k

= 0

Put x=k in given function:-

⇒ f(k) = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that 0 < k < 1.

Case 4: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>0</mn></math>

Put x=1

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>4</mn><mi mathvariant="normal">x</mi></math>

Put x=1

= 4

Because R.H.L ≠ L.H.L

So, f is not continuous at x=1.

Hence f is discontinuous at x=1.

Case 5: k > 1

⇒ f(x) = 4x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>4</mn><mi mathvariant="normal">x</mi></math>

Put x=k

= 4k

Put x=k in given function:-

⇒ f(k) = 4k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 1.

Hence f is only discontinuous at x=1.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">16</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < - 1   ⇒ f(x) = - 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>2</mn></math>

Put x=k

= - 2

Put x=k in given function:-

⇒ f(k) = - 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < - 1.

Case 2: k = - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mn>2</mn></math>

Put x = - 1

= - 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x = - 1

= - 2

Put x = - 1 in given function:-

⇒ f(-1) = - 2

Because R.H.L = L.H.L = f(-1)

Hence f is continuous at x = - 1.

Case 3: -1 < x < 1

⇒ f(x) = 2x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=k

= 2k

Put x=k in given function:-

⇒ f(k) = 2k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that -1 < x < 1.

Case 4: k = 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">x</mi></math>

Put x=1

= 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>2</mn></math>

Put x=1

= 2

Put x=1 in given function

⇒ f(1) = 2

Because R.H.L = L.H.L = f(1)

So, f is continuous at x=1.

Case 5: k > 1

⇒ f(x) = 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mn>2</mn></math>

Put x=k

= 2

Put x=k in given function:-

⇒ f(k) = 2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k > 1.

Hence f is continuous at all points.

17. Find the relationship between a and b so that the function f defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>ax</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi>bx</mi><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>

is continuous at x = 3.

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>ax</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi>bx</mi><mo>+</mo><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x=3:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>ax</mi><mo>+</mo><mn>1</mn></math>

Put x=3

= 3a+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>3</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>bx</mi><mo>+</mo><mn>3</mn></math>

Put x=3

= 3b+3

Given functions is continuous then

R.H.L = L.H.L = f(3)

⇒ 3a+1 = 3b+3 = 3a+1

⇒ 3a-3b = 2

⇒ a-b = 2/3

⇒ a = b+2/3

18. For what value of λ is the function defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">&#x3BB;</mi><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfenced><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

continuous at x = 0? What about continuity at x = 1?

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">&#x3BB;</mi><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfenced><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x=0:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">&#x3BB;</mi><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfenced></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>4</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=0

= 1

Hence R.H.L ≠ L.H.L

So there is no such λ exists.

At x=1

Let k is a real number

f(x) = 4x+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>4</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= 4k+1

Put x=k in given function:-

⇒ f(k) = 4k+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k=1 at any value of λ.

19. Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Solun:- Given function is g(x) = x - [x]

Let n be an integer.

g(k) = k - [k] = k - k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>-</mo></msup></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mfenced open="[" close="]"><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>-</mo></msup></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mfenced open="[" close="]"><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>-</mo></msup></mrow></munder><mfenced><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mfenced open="[" close="]"><mi mathvariant="normal">n</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">n</mi><mo>-</mo><mfenced><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mn>1</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>+</mo></msup></mrow></munder><mfenced><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mfenced open="[" close="]"><mi mathvariant="normal">x</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">n</mi><mo>+</mo></msup></mrow></munder><mfenced><mrow><mi mathvariant="normal">n</mi><mo>-</mo><mfenced open="[" close="]"><mi mathvariant="normal">n</mi></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">n</mi><mo>-</mo><mi mathvariant="normal">n</mi><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>

Because R.H.L ≠ L.H.L

Hence given function is discontinuous at all integers.

20. Is the function defined by f(x) = x2 - sin x + 5 continuous at x = π?

Solun:- Given function is f(x) = x2 - sin x + 5

f(Ï€) = Ï€2 - sin Ï€ + 5 = Ï€2 + 5     (sin Ï€ = 0)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">&#x3C0;</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">&#x3C0;</mi></mrow></munder><mfenced><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mspace linebreak="newline"/></math>

Put x = π

= π2 - sin π + 5

= π2 + 5

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">&#x3C0;</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">&#x3C0;</mi></mfenced></math>

Hence f is continuous at x = π.

21. Discuss the continuity of the following functions:

(a) f(x) = sin x + cos x

(b) f(x) = sin x - cos x

(c) f(x) = sin x . cos x

Solun:- Let g(x) = sin x and h(x) = cos x

Let c be a real number then

g(c) = sin c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= sin c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

h(c) = cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at x = c.

We know that if g and h are two continuous functions then

g+h, g-h and g.h are also continuous.

(a) f(x) = sin x + cos x

⇒  f(x) = g(x) + h(x)

Because g(x) and h(x) are continuous functions then g(x)+h(x) is continuous.

Hence f(x) is also a continuous function.

(b) f(x) = sin x - cos x

⇒  f(x) = g(x) - h(x)

Because g(x) and h(x) are continuous functions then g(x)-h(x) is continuous.

Hence f(x) is also a continuous function.

(a) f(x) = sin x . cos x

⇒  f(x) = g(x) . h(x)

Because g(x) and h(x) are continuous functions then g(x).h(x) is continuous.

Hence f(x) is also a continuous function.

22. Discuss the continuity of the cosine, cosecant, secant, and cotangent functions.

Solun:- Let g(x) = sin x and h(x) = cos x

Let c be a real number then

g(c) = sin c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= sin c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

h(c) = cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

h is continuous at x = c.

Hence cosine is a continuous function.

We know that cosec x=1/sin x

cosec x = 1/g(x)  given sin x ≠ 0

We know that if g(x) is continuous then 1/g(x) is also continuous.

Hence cosecant is a continuous function except for x = nÏ€, n∈Z.

We know that sec x=1/cos x

sec x = 1/h(x)     given cos x ≠ 0

We know that if h(x) is continuous then 1/h(x) is also continuous.

Hence secant is a continuous function except for x = (2n+1)Ï€/2, n∈Z.

We know that cot x=cos x/sin x

cot x = h(x)/g(x)

We know that if g(x) and h(x) are continuous functions then h(x)/g(x) is also a continuous function.

Hence cotangent is a continuous function except for x = nÏ€, n∈Z.

23. Find all points of discontinuity of f, where 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k < 0   

⇒ f(x) = sin x / x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>&#xA0;</mo><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac></math>

Put x=k

= sin k / k

Put x = k in given function:-

⇒ f(k) = sin k / k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k < 0.

Case 2: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mo>&#xA0;</mo><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac><mo>=</mo><mn>1</mn></math>

= 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=0

= 1

Put x=0 in given function:-

⇒ f(0) = 1

Because R.H.L = L.H.L = f(0)

Hence f is continuous at x=0.

Case 3: k > 0   

⇒ f(x) = x+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=k

= k+1

Put x=k in given function:-

⇒ f(k) = k+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

So, f is continuous at all points k, such that k > 0.

Hence there is no point of discontinuity.

24. Determine if f defined by 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

is a continuous function?

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k 0   

⇒ f(x) = x2sin(1/x)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mrow><mo>&#xA0;</mo><mn>1</mn></mrow><mi mathvariant="normal">x</mi></mfrac><mspace linebreak="newline"/><mi>Put</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mi mathvariant="normal">k</mi><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">k</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mrow><mo>&#xA0;</mo><mn>1</mn></mrow><mi mathvariant="normal">k</mi></mfrac><mspace linebreak="newline"/><mi>Put</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>given</mi><mo>&#xA0;</mo><mi>function</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">k</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mrow><mo>&#xA0;</mo><mn>1</mn></mrow><mi mathvariant="normal">k</mi></mfrac></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k ≠ 0.

Case 2: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mfrac><mrow><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></mstyle></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mo>&#xA0;</mo><mfenced><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac></mfenced><mo>=</mo><mn>1</mn></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mfrac><mrow><mi>sin</mi><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac></mstyle></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mn>0</mn></mrow></munder><mo>&#xA0;</mo><mfenced><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mi mathvariant="normal">x</mi></mfrac></mfenced><mo>=</mo><mn>1</mn></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ f(0) = 0

Because R.H.L = L.H.L = f(0)

Hence f is continuous at all x.

25. Examine the continuity of f, where f is defined by 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

We know that for continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Let k be a real number then

Case 1: k0   ⇒ f(x) = sin x - cos x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=k

= sink - cos k

Put x=k in the given function

⇒ f(k) = sin k - cos k

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">k</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">k</mi></mfenced></math>

Hence f is continuous at all points k, such that k ≠ 0.

Case 2: k = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/></math>

Put x=0

= - 1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/></math>

Put x=0

= - 1

Put x=0 in given function:-

⇒ f(0) = - 1

Because R.H.L = L.H.L = f(0)

Hence f is continuous at all x.

Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">26</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mi>kcos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>at</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mrow><mi>kcos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfrac><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2260;</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x = π/2:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfrac><mrow><mi>kcos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><mi>sin</mi><mo>&#xA0;</mo><mfenced><mrow><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfrac><mrow><mi>ksin</mi><mo>&#xA0;</mo><mfenced><mrow><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo><mi mathvariant="normal">x</mi></mrow></mfenced></mrow><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfrac><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfrac><mrow><mi>ksin</mi><mo>&#xA0;</mo><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow><mn>2</mn></mfrac></mstyle></mfenced></mrow><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mfrac><mi mathvariant="normal">k</mi><mn>2</mn></mfrac><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow><mn>2</mn></mfrac></mstyle></mfenced></mrow><mstyle displaystyle="true"><mfrac><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow><mn>2</mn></mfrac></mstyle></mfrac><mspace linebreak="newline"/><mi>We</mi><mo>&#xA0;</mo><mi>know</mi><mo>&#xA0;</mo><mi>that</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mfrac><mi mathvariant="normal">&#x3C0;</mi><mn>2</mn></mfrac></mrow></munder><mfrac><mrow><mi>sin</mi><mo>&#xA0;</mo><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow><mn>2</mn></mfrac></mstyle></mfenced></mrow><mstyle displaystyle="true"><mfrac><mrow><mi mathvariant="normal">&#x3C0;</mi><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mrow><mn>2</mn></mfrac></mstyle></mfrac><mo>=</mo><mn>1</mn></math>

Put x=Ï€/2

= k/2

Given functions is continuous then

L.H.L = f(Ï€/2)

⇒ k/2 = 3

⇒ k = 6

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">27</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>at</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>2</mn></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x = 2:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mn>3</mn><mspace linebreak="newline"/></math>

Put x=2

= 3

Given functions is continuous then

R.H.L = f(2)

⇒ 3 = k(2)2

⇒ 4k = 3

⇒ k = 3/4

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">28</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>kx</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mi mathvariant="normal">&#x3C0;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mi mathvariant="normal">&#x3C0;</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>at</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mi mathvariant="normal">&#x3C0;</mi></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>kx</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mi mathvariant="normal">&#x3C0;</mi></mtd></mtr><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mi mathvariant="normal">&#x3C0;</mi></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x = π:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">&#x3C0;</mi><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mi mathvariant="normal">&#x3C0;</mi><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mspace linebreak="newline"/></math>

Put x=Ï€

= - 1

Given functions is continuous then

R.H.L = f(Ï€)

⇒ - 1 = Ï€(k)+1

⇒ Ï€(k) = - 2

⇒ k = - 2/Ï€

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">29</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>kx</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>at</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mn>5</mn></math>

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>kx</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&gt;</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x = 5:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>5</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>5</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=5

= 10

Given functions is continuous then

R.H.L = f(5)

⇒ 10 = 5k+1

⇒ 5k = 9

⇒ k = 9/5

30. Find the values of a and b such that the function defined by

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>ax</mi><mo>+</mo><mi mathvariant="normal">b</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>2</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>21</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>10</mn></mtd></mtr></mtable></mfenced></math>

is continuous function.

Solun:- Given function is

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>5</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2264;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>ax</mi><mo>+</mo><mi mathvariant="normal">b</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mn>2</mn><mo>&lt;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>21</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>10</mn></mtd></mtr></mtable></mfenced></math>

continuous function:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

At x = 2:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>2</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>ax</mi><mo>+</mo><mi mathvariant="normal">b</mi><mspace linebreak="newline"/></math>

Put x=2

= 2a+b

Given functions is continuous then

R.H.L = f(2)

⇒ 2a+b = 5 ……………(1)

At x = 10:-

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>10</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">f</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>10</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mi>ax</mi><mo>+</mo><mi mathvariant="normal">b</mi><mspace linebreak="newline"/></math>

Put x=10

= 10a+b

Given functions is continuous then

L.H.L = f(10)

⇒ 10a+b = 21 ……………(2)

Solving Eq. 1 and 2:-

⇒ a = 2 and b = 1
31. Show that the function defined by f(x) = cos(x2) is a continuous function.

Solun:- Let g(x) = cos x  and  h(x) = x2

Let c be a real number then

g(x) = cos x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= cos c

Put value of x is given function

g(c) = cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mspace linebreak="newline"/></math>

Put x=c

= c2

Put value of x is given function

h(c) = c2

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at x = c.

⇒ goh(x) = g(h(x))

⇒ goh(x) = cos(x2)

We know that if g is continuous at c and if f is continuous at g(c), then goh(x) is continuous at c provided g and h are real-valued functions such that goh is defined at c.

Hence cos (x2) is a continuous function.

32. Show that the function defined by f(x) = |cos x| is a continuous function.

Solun:- Let g(x) = |x|  and  h(x) = cos x

Let c be a real number then

⇒ g(x) = |x|

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Let c be a real number then

Case 1: c > 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= c

Put x=c in given function:-

⇒ g(c) = c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at all points c, such that c > 0.

Case 2: c < 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mrow><mi>lim</mi><mo>&#xA0;</mo></mrow><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= - c

Put x=c in given function:-

⇒ g(c) = - c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at all points c, such that c < 0.

Case 3: c = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ g(0) = 0

Because R.H.L = L.H.L = f(0)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

h(x) = cos x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= cos c

Put value of x is given function

h(c) = cos c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at x = c.

⇒ goh(x) = g(h(x))

⇒ goh(x) = |cos x|

We know that if g is continuous at c and if f is continuous at g(c), then goh(x) is continuous at c provided g and h are real-valued functions such that goh is defined at c.

Hence |cos x| is a continuous function.

33. Examine that sin |x| is a continuous function.

Solun:- Let g(x) = sin x  and  h(x) = |x|

Let c be a real number then

g(x) = sin x

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mfenced><mrow><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mspace linebreak="newline"/></math>

Put x=c

= sin c

Put value of x is given function

g(c) = sin c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

⇒ h(x) = |x|

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Let c be a real number then

Case 1: c > 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= c

Put x=c in given function:-

⇒ h(c) = c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at all points c, such that c > 0.

Case 2: c < 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mrow><mi>lim</mi><mo>&#xA0;</mo></mrow><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= - c

Put x=c in given function:-

⇒ h(k) = - c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at all points c, such that c < 0.

Case 3: c = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ f(0) = 0

Because R.H.L = L.H.L = f(0)

So, h is continuous at x=0.

Hence h is continuous at x = c.

⇒ goh(x) = g(h(x))

⇒ goh(x) = sin |x|

We know that if g is continuous at c and if f is continuous at g(c), then goh(x) is continuous at c provided g and h are real-valued functions such that goh is defined at c.

Hence sin |x| is a continuous function.

34. Find all the points of discontinuity of function defined by f(x) = |x| - |x+1|

Solun:- Given f(x) = |x| - |x+1|

Let g(x) = |x|  and h(x) = |x+1|

Let c be a real number then

⇒ g(x) = |x|

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math>

Let c be a real number then

Case 1: c > 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= c

Put x=c in given function:-

⇒ g(c) = c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at all points c, such that c > 0.

Case 2: c < 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mrow><mi>lim</mi><mo>&#xA0;</mo></mrow><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=c

= - c

Put x=c in given function:-

⇒ g(c) = - c

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at all points c, such that c < 0.

Case 3: c = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><msup><mn>0</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mi mathvariant="normal">x</mi></math>

Put x=0

= 0

Put x=0 in given function:-

⇒ g(0) = 0

Because R.H.L = L.H.L = f(0)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">g</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence g is continuous at x = c.

⇒ h(x) = |x + 1|

We know that

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#x2265;</mo><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&lt;</mo><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>

Let c be a real number then

Case 1: c > -1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></math>

Put x=c

= c+1

Put x=c in given function:-

⇒ h(c) = c+1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at all points c, such that c > 0.

Case 2: c < -1

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mrow><mi>lim</mi><mo>&#xA0;</mo></mrow><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x=c

= - (c+1)

Put x=c in given function:-

⇒ h(k) = - (c+1)

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Hence</mi><mo>&#xA0;</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mi mathvariant="normal">c</mi></mrow></munder><mo>&#xA0;</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">c</mi></mfenced></math>

Hence h is continuous at all points c, such that c < 0.

Case 3: c = 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>+</mo></msup></mrow></munder><mo>&#xA0;</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x = - 1

= 0

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mi mathvariant="normal">h</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>&#xA0;</mo><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><munder><mi>lim</mi><mrow><mi mathvariant="normal">x</mi><mo>&#x2192;</mo><mo>-</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></munder><mo>&#xA0;</mo><mo>-</mo><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>

Put x = - 1

= 0

Put x = - 1 in given function:-

⇒ f(-1) = 0

Because R.H.L = L.H.L = f(0)

So, h is continuous at x=0.

Hence h is continuous at x = c.

We know that if g and h are two continuous functions then g-h is also a  continuous function.

Given f(x) = |x| - |x+1|

f(x) = g(x) - h(x)

Hence given function is continuous function.


See Also:-

If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails
For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email

Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post