Important Note

Please turn desktop mode or rotate your mobile screen for better view

Exercise 2.1

Find the Principal values of the following:
1. sin-1(-1/2)
Sol:- Let y = sin-1(-1/2)………………..(1)
We know sin-1(-x) = -sin-1x
⇒ y = - sin-1(1/2)
⇒ -y = sin-1 (1/2)
sin (-y) = 1/2
sin (-y) = sin (Π/6)
-y = Π /6
⇒ y = - Π/6
From Eq. 1:- put the value of y
sin-1(-1/2) = - Π/6
Ans… - Π/6 lies in the range of sin-1x [-Π/2, Π/2],
           so principal value is - Π/6.
2. cos-1(3/2)
Sol:- Let y = cos-1(√3/2) ………………..(1)
cos y = √3/2
cos y = cos (Π/6)
y = Π /6
From Eq. 1:- put the value of y
cos-1(√3/2) = Π/6
Ans… Π/6 lies in the range of cos-1x [0, Π],
           so principal value is Π/6.
3. cosec-1(2)
Sol:- Let y = cosec-1(2) ………………..(1)
cosec y = 2
cosec y = cosec (Π /6)
y = Π /6
From Eq. 1:- put the value of y
cosec-1(2) = Π /6
Ans… Π/6 lies in the range of cosec-1x  [-Π/2, Π/2]-{0},
           so principal value is Π/6.
4. tan-1(-√3)
Sol:- y = tan-1(-√3) ………………..(1)
We know tan-1(-x) = - tan-1x
⇒ y = - tan-1(√3)
⇒ -y = tan-1(√3)
⇒ tan (-y) = 3
⇒ tan (-y) = tan (Π/3)
⇒ tan (-y) = tan (Π/3)
⇒ -y = Π/3
⇒ y = -Π/3
From Eq. 1:- put the value of y
tan-1(-3) = - Π/3
Ans… - Π/3 lies in the range of tan-1x  (-Π/2, Π/2),
           so principal value is - Π/3.
5. cos-1(-1/2)
⇒ y = cos-1(-1/2)………………..(1)
We know cos-1(-x) = Π - cos-1x
⇒ y = Π - cos-1(1/2)
cos-1(1/2) = Π - y
⇒ cos (Π -y) = 1/2
⇒ cos (Π -y) = cos (Π/3)
Π -y = Π/3
⇒ y = Π-Π/3
⇒ y = 2Π/3
From Eq. 1:- put the value of y
cos-1(-1/2) = 2Π/3
Ans… 2Π/3 lies in the range of cos-1x [0, Π],
           so principal value is 2Π/3.
6. tan-1(-1)
Sol:- Let y = tan-1(-1) ………………..(1)
We know tan-1(-x) = -tan-1x
⇒ y = -tan-1(1)
⇒ -y = tan-1(1)
⇒ tan (-y) = 1
⇒ tan (-y) = tan (Π/4)
⇒ -y = Π/4
⇒ y = - Π/4
From Eq. 1:- put the value of y
tan-1(-1) = - Π/4
Ans… - Π/4 lies in the range of tan-1x (-Π/2, Π/2),
           so principal value is - Π/4.
7. sec-1(2/√3)
Sol:- y = sec-1(2/√3) ………………..(1)
⇒ sec y = 2/√3
⇒ sec y = sec(Π/6)
⇒ y = Π/6
From Eq. 1:- put the value of y
sec-1(2/√3) = Π/6
Ans… Π/6 lies in the range of sec-1x [0,Π]-{Π/2},
           so principal value is Π/6.
8. cot-1(3)
Sol:- y = cot-1(√3) ………………..(1)
cot y = √3
⇒ cot y = cot (Π/6)
⇒ y = Π/6
From Eq. 1:- put the value of y
cot-1(√3) = Π/6
Ans… Π/6 lies in the range of cot-1x (0, Π),
           so principal value is Π/6.
9. cos-1(-1/√2)
Sol:- Let y = cos-1(-1/2) ………………..(1)
We know cos-1(-x) = Π - cos-1x
⇒ y = Π - cos-1(1/√2)
cos-1(1/2) = Π - y
⇒ cos (Π-y) = 1/√2
⇒ cos (Π-y) = cos (Π/4)
Π - y = Π/4
⇒ y = Π - Π/4
⇒ y = 3Π/4
From Eq. 1:- put the value of y
cos-1(-1/2) = 3Π/4
Ans… 3Π/4 lies in the range of cos-1x [0, Π],
           so principal value is 3Π/4.
10. cosec-1(-2)
Sol:- Let y = cosec-1(-2) ………………..(1)
We know cosec-1(-x) = -cosec-1x
⇒ y = -cosec-1(√2)
⇒ -y = cosec-1(2)
⇒ cosec (-y) = 2
⇒ cosec (-y) = cosec (Π/4)
⇒ -y = Π/4
y = -Π/4
From Eq. 1:- put the value of y
⇒ cosec (-2) = - Π/4
Ans… - Π/4 lies in the range of cosec-1x [-Π/2, Π/2]-{0},
           so principal value is - Π/4.
Find the values of the following:
11. tan-1(1) + cos-1(-1/2) + sin-1(-1/2)
Sol:- tan-1(1) + cos-1(-1/2) + sin-1(-1/2) ………………..(1)
A = tan-1(1) ………………..(2)
⇒ tan (A) = 1
⇒ tan (A) = tan (Π/4)
⇒ A = Π/4 { lies in range of tan-1x (-Π/2,Π/2) }
B = cos-1(-1/2) ………………..(3)
We know cos-1(-x) = Π- cos-1x
⇒ B = Π - cos-1(1/2)
cos-1(1/2) = Π - B
⇒ cos (Π-B) = 1/2
⇒ cos (Π-B) = cos (Π/3)
Π - B = Π/3
⇒ B = Π - Π/3
⇒ B = 2Π/3 { lies in range of cos-1x [0,Π] }
C = sin-1(-1/2) ………………..(4)
We know sin-1(-x) = -sin-1x
⇒ C = -sin-1(1/2)
⇒ -C = sin-1(1/2)
sin(-C) = 1/2
sin(-C) = sin (Π/6)
⇒ -C = Π/6
⇒ C = - Π/6{ lies in range of sin-1x [-Π/2,Π/2] }
put Eq. 2,3,4 values in Eq. 1:-
= A + B +C
put A, B, C values:-
= Π/4 + 2Π/3 + (-Π/6)
= (3Π+8Π-2Π)/12
= 9Π/12
= 3Π/4 (Ans……)
12. cos-1(1/2) + 2sin-1(1/2)
Sol:- cos-1(1/2) + 2sin-1(1/2) ………………..(1)
Let A = cos-1(1/2) ………………..(2)
⇒ cos A = 1/2
⇒ cos A = cos (Π/3)
⇒ A = Π/3 { lies in range of cos-1x [0,Π] }
Let B = sin-1(1/2) ………………..(3)
⇒ sin B = 1/2
⇒ sin B = sin (Π/6)
⇒ B = Π/6 { lies in range of sin-1x [-Π/2,Π/2] }
put Eq. 2,3 values in Eq. 1:-
= A+2B
put A, B values:-
= Π/3+2Π/6
= 2Π/3 (Ans……)
13. If sin-1x = y , then
(A) 0 y ≤ Π
(B) -Π/2 y ≤ Π/2
(C) 0 < y < Π
(D) -Π/2 < y < Π/2
Sol:- We know value of sin-1x lies in range of [-Π/2, Π/2]
then value of y lies between [-Π/2, Π/2].
(Ans…… B)
14. tan-1(3) - sec-1(-2)
(A) Π
(B) - Π/3
(C) Π/3

(D) 2Π/3
Sol:- tan-1(3) - sec-1(-2) ………………..(1)
Let A = tan-1(3) ………………..(2)
⇒ tan A = 3
⇒ tan A = tan (Π/3)
⇒ A = Π/3 { lies in range of tan-1x (-Π/2,Π/2) }
Let B = sec-1(-2) ………………..(3)
We know sec-1(-x) = Π-sec-1(x)
⇒ B = Π - sec-1(2)
sec-1(2) = Π - B
⇒ sec (Π-B) = 2
⇒ sec (Π-B) = sec(Π/3)
Π - B = Π/3
⇒ B = Π - Π/3
⇒ B = 2Π/3 { lies in range of sec-1x [0,Π]-{ Π/2} }
put Eq. 2,3 values in Eq. 1:-
= A-B
put A, B values:-
= Π/3 – 2Π/3
= -Π/3
(Ans……B)

You can download exercise 2.1 in pdf file to click on the download

For downloading definitions and formulas in Pdf 

If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails
For subscribing me follow these instructions:-

1. Fill your E-mail address

2. Submit Recaptcha

3. Go to your email and then click on the verify link

Then you get all update on your email


Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post