Exercise 5.7
Find the second-order derivatives of the functions given in Exercises 1 to 10.
1. x2+3x+2
Solun:- Let y = x2+3x+2
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
2. x20
Solun:- Let y = x20
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
3. x.cos x
Solun:- Let y = x.cos x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
4. log x
Solun:- Let y = log x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
5. x3log x
Solun:- Let y = x3log x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
6. exsin 5x
Solun:- Let y = exsin 5x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
7. e6xcos 3x
Solun:- Let y = e6xcos 3x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
8. tan-1x
Solun:- Let y = tan-1x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
9. log(log x)
Solun:- Let y = log(log x)
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
10. sin(log x)
Solun:- Let y = sin(log x)
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
11. If y = 5cos x - 3sin x, prove that
Solun:- Let y = 5cos x - 3sin x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
Given 5cos x - 3sin x = y
(Hence Proved....)
12. If y = cos-1x, prove that in terms of y alone.
Solun:- Let y = cos-1x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
Given y = cos-1x ⇒ x = cos y
13. If y = 3cos(log x) + 4sin(log x), show that x2y2 + xy1 + y = 0
Solun:- Let y = 3cos(log x) + 4sin(log x)
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
Given y = 3cos(log x) + 4sin(log x)
From Eq. 1:-
x2y2 + xy1 + y = 0 (Hence Proved...)
14. If y = Aemx + Benx , show that
Solun:- Let y = Aemx + Benx
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
Taking L.H.S:-
15. If y = 500e7x + 600e-7x , show that
Solun:- Given y = 500e7x + 600e-7x
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
(Hence Proved....)
16. If ey(x + 1) = 1, show that
Solun:- Given ey(x + 1) = 1
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
(Hence Proved....)
17. If y = (tan-1x)2, show that (x2 + 1)2 y2 + 2x(x2 + 1)y1 = 2
Solun:- Given y = (tan-1x)2
Differentiate w.r.t. x:-
Again Differentiate w.r.t. x:-
(Hence Proved....)
Post a Comment
Comment me for any queries or topic which you want to learn