Important Note

Please turn desktop mode or rotate your mobile screen for better view

Exercise 4.6

Solve system of linear equations, using matrix method, in Exercise 7 to 14.

7. 5x+2y = 4

    7x+3y = 5

Solun:- Given equations represent in matrix form:-

⇒ AX = B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x=2, y=-3

8. 2x-y = -2

    3x+4y = 3

Solun:- Given equations represent in matrix form:-

⇒ AX = B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>11</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>12</mn><mn>11</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x= - 5/11, y=12/11

9. 4x-3y = 3

    3x-5y = 7

Solun:- Given equations represent in matrix form:-AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>11</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>19</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mn>11</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>19</mn></mrow><mn>11</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x= - 6/11, y = - 19/11

10. 5x+2y = 3

      3x+2y = 5

Solun:- Given equations represent in matrix form:-AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>16</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x= - 1, y = 4

11. 2x+y+z = 1

      x-2y-z = 3/2

      3y-5z = 9

Solun:- Given equations represent in matrix form:-AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mn>13</mn></mfenced><mo>-</mo><mn>1</mn><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mn>3</mn></mfenced><mo>=</mo><mn>34</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>8</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>10</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>6</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>5</mn></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>13</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>13</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>34</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>13</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>34</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>13</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mn>9</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>34</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>34</mn></mtd></mtr><mtr><mtd><mn>17</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>51</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x= 1, y = 1/2,  z= - 3/2

12. x-y+z = 4

      2x+y-3z = 0

      x+y+z = 2

Solun:- Given equations represent in matrix form:-

 AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mfenced><mn>4</mn></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mn>5</mn></mfenced><mo>+</mo><mn>1</mn><mfenced><mn>1</mn></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>10</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>20</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x = 2, y = -1,  z = 1

13. 2x+3y+3z = 5

      x-2y+z = -4

      3x-y-2z = 3

Solun:- Given equations represent in matrix form:- AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mn>5</mn></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mfenced><mn>5</mn></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>40</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>13</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>11</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>9</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>7</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>40</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>40</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>40</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>40</mn></mtd></mtr><mtr><mtd><mn>80</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>40</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x = 1, y = 2,  z = - 1

14 . x-y+2z = 7

      3x+4y-5z = -5

      2x-y+3z = 12

Solun:- Given equations represent in matrix form:- AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mfenced><mn>7</mn></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mn>19</mn></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>11</mn></mrow></mfenced><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>7</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>19</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>1</mn></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>3</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>11</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>7</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mo>-</mo><mn>19</mn></mtd><mtd><mo>-</mo><mn>11</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>11</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x = 2, y = 1,  z = 3

<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">15</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">find</mi><mo mathvariant="bold">&#xA0;</mo><msup><mi mathvariant="bold">A</mi><mrow><mo mathvariant="bold">-</mo><mn mathvariant="bold">1</mn></mrow></msup><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Using</mi><mo mathvariant="bold">&#xA0;</mo><msup><mi mathvariant="bold">A</mi><mrow><mo mathvariant="bold">-</mo><mn mathvariant="bold">1</mn></mrow></msup><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">solve</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">the</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">system</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">equations</mi></math>

2x-3y+5z = 11

3x+2y-4z = -5

x+y-2z = -3

Solun:- We know that A-1 = 1/|A| (adj A) 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mfenced><mn>0</mn></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>5</mn><mfenced><mn>1</mn></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>9</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>23</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>13</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>9</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>23</mn></mtd><mtd><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>9</mn></mtd><mtd><mn>23</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>23</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/></math>

Given Eq. 

2x-3y+5z = 11

3x+2y-4z = -5

x+y-2z = -3

Given equations represent in matrix form:- AX = B 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>23</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

Compare corresponding elements

⇒ x = 1, y = 2,  z = 3

16. The cost of 4 kg onion, 3 kg wheat, and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat, and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Solun:- Let the cost of 1 kg onion is = x

the cost of 1 kg wheat is = y

the cost of 1 kg rice is = z

⇒ 4x+3y+2z = 60

⇒ 2x+4y+6z = 90

⇒ 6x+2y+3z = 70

Apply Matrix method and represent in matrix form:- AX = B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>60</mn></mtd></mtr><mtr><mtd><mn>90</mn></mtd></mtr><mtr><mtd><mn>70</mn></mtd></mtr></mtable></mfenced></math>

We know that X = A-1B

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mfenced><mn>0</mn></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>30</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>20</mn></mrow></mfenced><mo>=</mo><mn>50</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>11</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>11</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>12</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>12</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>30</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>13</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>13</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>20</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>21</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>21</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>5</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>22</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>22</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>23</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>23</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>10</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>31</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>31</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>10</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>32</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>32</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mo>-</mo><mn>20</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mn>3</mn><mo>+</mo><mn>3</mn></mrow></msup><msub><mi mathvariant="normal">M</mi><mn>33</mn></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mi mathvariant="normal">A</mi><mn>33</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open="|" close="|"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>10</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>Cofactor</mi><mo>&#xA0;</mo><mi>Matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>30</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>10</mn><mo>&#xA0;</mo></mtd><mtd><mo>-</mo><mn>20</mn></mtd><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>adj</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>30</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>20</mn></mtd><mtd><mn>10</mn></mtd><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mtable><mtr><mtd><mi mathvariant="normal">A</mi></mtd></mtr></mtable></mfenced></mfrac><mfenced><mrow><mi>adj</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mspace linebreak="newline"/></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>50</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>30</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>20</mn></mtd><mtd><mn>10</mn></mtd><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi mathvariant="normal">B</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>50</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>30</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>20</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>20</mn></mtd><mtd><mn>10</mn></mtd><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>60</mn></mtd></mtr><mtr><mtd><mn>90</mn></mtd></mtr><mtr><mtd><mn>70</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>50</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>250</mn></mtd></mtr><mtr><mtd><mn>400</mn></mtd></mtr><mtr><mtd><mn>400</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>

So, the cost of 1 kg onion is = 5 Rs

the cost of 1 kg wheat is = 8 Rs

the cost of 1 kg rice is = 8 Rs


See Also:-

If you have any queries, you can ask me in the comment section

And you can follow/subscribe me for the latest updates on your e-mails

For subscribing me follow these instructions:-
1. Fill your E-mail address
2. Submit Recaptcha
3. Go to your email and then click on the verify link
Then you get all update on your email

Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post