Important Note

Please turn desktop mode or rotate your mobile screen for better view

Exercise 3.2

1. 
    <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Let</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">C</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math>
Find each of following:
(i) A+B
Solun:- According to the addition law of matrix:-
Because Order of A = Order of B
So, the addition of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
(ii) A-B
Solun:- Because Order of A = Order of B
So, the difference of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
(iii) 3A-C
Solun:- Calculate 3A:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Because Order of 3A = Order of C
So, the difference of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi mathvariant="normal">A</mi><mo>-</mo><mi mathvariant="normal">C</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>8</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
(iv) AB
Solun:- No. of columns of matrix A =2
No. of rows of matrix B = 2
No. of columns of matrix A = No. of rows of matrix B
Then the multiplication of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>AB</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>&#xD7;</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>&#xD7;</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mtd><mtd><mn>2</mn><mo>&#xD7;</mo><mn>3</mn><mo>+</mo><mn>4</mn><mo>&#xD7;</mo><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn><mo>&#xD7;</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>&#xD7;</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mtd><mtd><mn>3</mn><mo>&#xD7;</mo><mn>3</mn><mo>+</mo><mn>2</mn><mo>&#xD7;</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>AB</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd><mtd><mn>26</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>19</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
(v) BA
Solun:-  No. of columns of matrix B =2
No. of rows of matrix A = 2
No. of columns of matrix B = No. of rows of matrix A
Then the multiplication of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>BA</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn><mo>&#xD7;</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mtd><mtd><mn>1</mn><mo>&#xD7;</mo><mn>4</mn><mo>+</mo><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo>&#xD7;</mo><mn>2</mn><mo>+</mo><mn>5</mn><mo>&#xD7;</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn><mo>&#xD7;</mo><mn>4</mn><mo>+</mo><mn>5</mn><mo>&#xD7;</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>BA</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
2. Compute the following:
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">a</mi></mtd><mtd><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">b</mi></mtd><mtd><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi mathvariant="normal">a</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">b</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">a</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>i</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mtd><mtd><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup></mtd></mtr><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup></mtd><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>a</mi><mi>b</mi></mtd><mtd><mn>2</mn><mi>b</mi><mi>c</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>a</mi><mi>c</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>b</mi></mtd><mtd><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>b</mi><mi>c</mi></mtd></mtr><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>c</mi></mtd><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mn>2</mn></msup></mtd><mtd><msup><mfenced><mrow><mi>b</mi><mo>+</mo><mi>c</mi></mrow></mfenced><mn>2</mn></msup></mtd></mtr><mtr><mtd><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>c</mi></mrow></mfenced><mn>2</mn></msup></mtd><mtd><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>b</mi></mrow></mfenced><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>16</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>12</mn></mtd><mtd><mn>7</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>11</mn></mtd><mtd><mn>11</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>16</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>21</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>10</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>v</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr><mtr><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr><mtr><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
3. Compute the indicated products:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>i</mi></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>a</mi></mtd><mtd><mi>b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>b</mi></mtd><mtd><mi>a</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>a</mi></mtd><mtd><mo>-</mo><mi>b</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd><mtd><mi>a</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mtd><mtd><mo>-</mo><mi>a</mi><mi>b</mi><mo>+</mo><mi>a</mi><mi>b</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>a</mi><mi>b</mi><mo>+</mo><mi>a</mi><mi>b</mi></mtd><mtd><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>i</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced></mtd><mtd><mn>2</mn><mo>+</mo><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced></mtd><mtd><mn>3</mn><mo>+</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mtd></mtr><mtr><mtd><mn>2</mn><mo>+</mo><mn>6</mn></mtd><mtd><mn>4</mn><mo>+</mo><mn>9</mn></mtd><mtd><mn>6</mn><mo>+</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>13</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>i</mi><mi>v</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>12</mn></mtd><mtd><mo>-</mo><mn>6</mn><mo>+</mo><mn>6</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>10</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>20</mn></mtd></mtr><mtr><mtd><mn>3</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>15</mn></mtd><mtd><mo>-</mo><mn>9</mn><mo>+</mo><mn>8</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>15</mn><mo>+</mo><mn>16</mn><mo>+</mo><mn>25</mn></mtd></mtr><mtr><mtd><mn>4</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>18</mn></mtd><mtd><mo>-</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>20</mn><mo>+</mo><mn>20</mn><mo>+</mo><mn>30</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>42</mn></mtd></mtr><mtr><mtd><mn>18</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>56</mn></mtd></mtr><mtr><mtd><mn>22</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>70</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>v</mi></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>2</mn></mtd><mtd><mn>2</mn><mo>+</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>4</mn></mtd><mtd><mn>3</mn><mo>+</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>+</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>v</mi><mi>i</mi></mrow></mfenced><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Solun:- No. of columns of first matrix = No. of rows of the second matrix
then matrix multiplication is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn><mo>-</mo><mn>1</mn><mo>+</mo><mn>9</mn></mtd><mtd><mo>-</mo><mn>9</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>6</mn></mtd><mtd><mn>3</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>14</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
 <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mo>&#xA0;</mo><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">C</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
then compute (A+B) and (B-C). Also, verify that A+(B-C) = (A+B)-C.
Solun:- By definition of the addition of matrices:- Order of matrix A=Order of matrix B
then the addition of matrices is possible.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>+</mo><mi mathvariant="normal">B</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfenced><mrow><mi mathvariant="normal">B</mi><mo>-</mo><mi mathvariant="normal">C</mi></mrow></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking L.H.S:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>+</mo><mfenced><mrow><mi>B</mi><mo>-</mo><mi>C</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mi>A</mi><mo>+</mo><mfenced><mrow><mi>B</mi><mo>-</mo><mi>C</mi></mrow></mfenced><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking R.H.S:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></mfenced><mo>-</mo><mi>C</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>-</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mfenced><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></mfenced><mo>-</mo><mi>C</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
L.H.S = R.H.S (Hence Proved……....)
5. Compute 3A-5B.
 <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd><mtd><mn>1</mn></mtd><mtd><mfrac><mn>5</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd><mtd><mfrac><mn>4</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>7</mn><mn>3</mn></mfrac></mtd><mtd><mn>2</mn></mtd><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd><mtd><mfrac><mn>3</mn><mn>5</mn></mfrac></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>2</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>4</mn><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>7</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>6</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>2</mn><mn>5</mn></mfrac></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Solun:- Calculate 3A:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>
Calculate 5B:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>B</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Order of matrix 3A = Order of matrix 5B
then calculate 3A-5B
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>A</mi><mo>-</mo><mn>5</mn><mi>B</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">6</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Simplify</mi><mo>&#xA0;</mo><mi>cos&#x3B8;</mi><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos&#x3B8;</mi></mtd><mtd><mi>sin&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B8;</mi></mtd><mtd><mi>cos&#x3B8;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>sin&#x3B8;</mi><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>sin&#x3B8;</mi></mtd><mtd><mo>-</mo><mi>cos&#x3B8;</mi></mtd></mtr><mtr><mtd><mi>cos&#x3B8;</mi></mtd><mtd><mi>sin&#x3B8;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mi>sin&#x3B8;cos&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B8;cos&#x3B8;</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B8;cos&#x3B8;</mi></mtd></mtr><mtr><mtd><mi>sin&#x3B8;cos&#x3B8;</mi></mtd><mtd><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd><mtd><mi>sin&#x3B8;cos&#x3B8;</mi><mo>-</mo><mi>sin&#x3B8;cos&#x3B8;</mi></mtd></mtr><mtr><mtd><mo>-</mo><mi>sin&#x3B8;cos&#x3B8;</mi><mo>+</mo><mi>sin&#x3B8;cos&#x3B8;</mi></mtd><mtd><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi mathvariant="normal">&#x3B8;</mi></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>
7. Find X and Y, if
<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mstyle><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>+</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>-</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo mathvariant="bold">&#xA0;</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="normal">X</mi><mo>+</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>-</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mfenced><mrow><mi>By</mi><mo>&#xA0;</mo><mi>elimination</mi><mo>&#xA0;</mo><mi>method</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi>Put</mi><mo>&#xA0;</mo><mi>the</mi><mo>&#xA0;</mo><mi>value</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>&#xA0;</mo><mn>1</mn><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mn>3</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>3</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>2</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>2</mn></mfenced><mspace linebreak="newline"/><mi>Eq</mi><mo>.</mo><mn>1</mn><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>multiplied</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><mn>2</mn><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>&#xA0;</mo><mn>2</mn><mo>&#xA0;</mo><mi>is</mi><mo>&#xA0;</mo><mi>multiplied</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><mn>3</mn><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>4</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>6</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>3</mn></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>9</mn><mi mathvariant="normal">X</mi><mo>+</mo><mn>6</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>15</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>4</mn></mfenced><mo>&#xA0;</mo><mfenced><mrow><mi>Apply</mi><mo>&#xA0;</mo><mi>eliminition</mi><mo>&#xA0;</mo><mi>method</mi></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>-</mo><mn>5</mn><mi mathvariant="normal">X</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd><mtd><mo>-</mo><mn>15</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>2</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>12</mn></mrow><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>5</mn></mfrac></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/></math>


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Put</mi><mo>&#xA0;</mo><mi>the</mi><mo>&#xA0;</mo><mi>value</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>&#xA0;</mo><mn>1</mn><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>2</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>2</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>12</mn></mrow><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>5</mn></mfrac></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>4</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>24</mn></mrow><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>22</mn></mrow><mn>5</mn></mfrac></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>4</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mn>24</mn></mrow><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mo>-</mo><mn>22</mn></mrow><mn>5</mn></mfrac></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mn>3</mn><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>6</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>39</mn><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>42</mn><mn>5</mn></mfrac></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>6</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>39</mn><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>42</mn><mn>5</mn></mfrac></mtd><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mfrac><mn>2</mn><mn>5</mn></mfrac></mtd><mtd><mfrac><mn>13</mn><mn>5</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>14</mn><mn>5</mn></mfrac></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">8</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Find</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">X</mi><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">if</mi><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>+</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>+</mo><mi mathvariant="normal">Y</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mi>Put</mi><mo>&#xA0;</mo><mi>the</mi><mo>&#xA0;</mo><mi>value</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi mathvariant="normal">Y</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>&#xA0;</mo><mn>1</mn><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>&#xA0;</mo><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>2</mn><mi mathvariant="normal">X</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">X</mi><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">9</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Find</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">x</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">and</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">y</mi><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">if</mi><mo>&#xA0;</mo><mn>2</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mo>+</mo><mi mathvariant="normal">y</mi></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>8</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mspace linebreak="newline"/></math>
Order of both the matrices is same then compare corresponding elements.
⇒ 2+y=5
⇒ y=3
⇒ 2x+2=8
⇒ x+1=4
⇒ x=3
⇒ x=3 and y=4
10. Solve these equations for x,y,z and t, if:
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced open="[" close="]"><mtable><mtr><mtd><mi>x</mi></mtd><mtd><mi>z</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd><mtd><mi>t</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mn>3</mn><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>3</mn><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">z</mi></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">y</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">t</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>9</mn></mtd><mtd><mn>15</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd><mtd><mn>18</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi mathvariant="normal">x</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">z</mi></mtd></mtr><mtr><mtd><mn>2</mn><mi mathvariant="normal">y</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">t</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>9</mn></mtd><mtd><mn>15</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd><mtd><mn>18</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>x</mi></mtd><mtd><mn>2</mn><mi>z</mi></mtd></mtr><mtr><mtd><mn>2</mn><mi>y</mi></mtd><mtd><mn>2</mn><mi>t</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>6</mn></mtd><mtd><mn>18</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/></math>
Order of both the matrices is the same then compare corresponding elements.
⇒ x=3, y=6, z=9 and t=6
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">11</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>+</mo><mi mathvariant="normal">y</mi><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
Find the values of x and y.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>x</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mi>y</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mi>y</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
Order of both the matrices is the same then compare corresponding elements.
⇒ 2x-y=10…………(1)
⇒ 3x+y=5   (By elimination method)
⇒ 5x=15
⇒ x=3
Put the value of x in Eq. 1:-
⇒ 6-y=10
⇒ y=-4
⇒ x = 3 and y = -4
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">12</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">Given</mi><mo>&#xA0;</mo><mn>3</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi></mtd><mtd><mi mathvariant="normal">w</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn><mi mathvariant="normal">w</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn></mtd><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">z</mi><mo>+</mo><mi mathvariant="normal">w</mi></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Find the values of x,y,z and w.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi mathvariant="normal">z</mi></mtd><mtd><mn>3</mn><mi mathvariant="normal">w</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi mathvariant="normal">x</mi><mo>+</mo><mn>4</mn></mtd><mtd><mn>6</mn><mo>+</mo><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>+</mo><mi mathvariant="normal">z</mi><mo>+</mo><mi mathvariant="normal">w</mi></mtd><mtd><mn>2</mn><mi mathvariant="normal">w</mi><mo>+</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Order of both the matrices is the same then compare corresponding elements.
⇒ 3x=x+4
⇒ 2x=4
⇒ x=2
⇒ 3y=6+x+y
⇒ 2y=8
⇒ y=4
⇒ 3w=2w+3
⇒ w=3
⇒ 3z=-1+z+w
⇒ 2z= 2
⇒ z=1
⇒ x=2, y=4,w=3 and z=1
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">13</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">F</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mi mathvariant="bold">show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">F</mi><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle><mi mathvariant="bold">F</mi><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mstyle><mo mathvariant="bold">=</mo><mi mathvariant="bold">F</mi><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo></mrow></mstyle><mo mathvariant="bold">.</mo></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold">Solun</mi><mo mathvariant="bold">:</mo><mo mathvariant="bold">-</mo><mo>&#xA0;</mo><mi>Given</mi><mo>&#xA0;</mo><mi mathvariant="normal">F</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mi>Replace</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>given</mi><mo>&#xA0;</mo><mi>equation</mi><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">F</mi><mfenced><mi mathvariant="normal">y</mi></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mi mathvariant="normal">F</mi><mfenced><mi mathvariant="normal">x</mi></mfenced><mi mathvariant="normal">F</mi><mfenced><mi mathvariant="normal">y</mi></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mo>-</mo><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mi>cos</mi><mo>&#xA0;</mo><mi mathvariant="normal">y</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>&#xA0;</mo><mspace linebreak="newline"/><mi>No</mi><mo>.</mo><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>columns</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>first</mi><mo>&#xA0;</mo><mi>matrix</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>No</mi><mo>.</mo><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>rows</mi><mo>&#xA0;</mo><mi>of</mi><mo>&#xA0;</mo><mi>second</mi><mo>&#xA0;</mo><mi>matrix</mi><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cosxcosy</mi><mo>-</mo><mi>sinxsiny</mi><mo>+</mo><mn>0</mn></mtd><mtd><mo>-</mo><mi>cosxsiny</mi><mo>-</mo><mi>sinxcosy</mi><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sinxcosy</mi><mo>+</mo><mi>cosxsiny</mi><mo>+</mo><mn>0</mn></mtd><mtd><mo>-</mo><mi>sinxsiny</mi><mo>+</mo><mi>cosxcosy</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
We know cos(x+y)=cosxcosy-sinxsiny
⇒ sin(x+y)=sinxcosy+cosxsiny
Put these values in the matrix:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></mtd><mtd><mo>-</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></mtd><mtd><mi>cos</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>
Calculate F(x+y):-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Replace</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>&#xA0;</mo><mi>by</mi><mo>&#xA0;</mo><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi><mo>&#xA0;</mo><mi>in</mi><mo>&#xA0;</mo><mi>given</mi><mo>&#xA0;</mo><mi>Eq</mi><mo>.</mo><mo>:</mo><mo>-</mo><mspace linebreak="newline"/><mi mathvariant="normal">F</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mtd><mtd><mo>-</mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mtd><mtd><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
So, F(x)F(y)=F(x+y) (Hence Proved…....)
14. Show that
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi mathvariant="normal">i</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#x2260;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math>
Solun:- Taking L.H.S:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn><mo>-</mo><mn>3</mn></mtd><mtd><mn>5</mn><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>12</mn><mo>+</mo><mn>21</mn></mtd><mtd><mn>6</mn><mo>+</mo><mn>28</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>7</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>33</mn></mtd><mtd><mn>34</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Taking R.H.S:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>7</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>10</mn><mo>+</mo><mn>6</mn></mtd><mtd><mo>-</mo><mn>2</mn><mo>+</mo><mn>7</mn></mtd></mtr><mtr><mtd><mn>15</mn><mo>+</mo><mn>24</mn></mtd><mtd><mo>-</mo><mn>3</mn><mo>+</mo><mn>28</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>16</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>39</mn></mtd><mtd><mn>25</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Thus R.H.S doesn’t equal to L.H.S.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>ii</mi></mfenced><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>&#x2260;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Solun</mi><mo>:</mo><mo>-</mo><mi mathvariant="normal">L</mi><mo>.</mo><mi mathvariant="normal">H</mi><mo>.</mo><mi mathvariant="normal">S</mi><mo>&#xA0;</mo><mi>is</mi><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>6</mn></mtd><mtd><mn>1</mn><mo>-</mo><mn>2</mn><mo>+</mo><mn>9</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>12</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>1</mn><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>14</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Taking R.H.S:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mo>-</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd><mtd><mo>-</mo><mn>3</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>1</mn></mtd><mtd><mn>0</mn><mo>-</mo><mn>1</mn><mo>+</mo><mn>1</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>4</mn></mtd><mtd><mn>4</mn><mo>+</mo><mn>3</mn><mo>+</mo><mn>4</mn></mtd><mtd><mn>6</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd><mtd><mn>11</mn></mtd><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math>
Thus RHS doesn’t equal to LHS.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mo>&#xA0;</mo><mi>Find</mi><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi mathvariant="normal">A</mi><mo>+</mo><mn>6</mn><mi mathvariant="normal">I</mi><mo>,</mo><mo>&#xA0;</mo><mi>if</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>
Solun:- Given Eq. is A2-5A+6I   then Calculate A2
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi>A</mi><mn>2</mn></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>4</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>1</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>1</mn><mo>-</mo><mn>3</mn></mtd><mtd><mn>2</mn><mo>+</mo><mn>3</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>-</mo><mn>2</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>-</mo><mn>1</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>1</mn><mo>-</mo><mn>3</mn><mo>+</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
Put all values in given Eq. :-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>-</mo><mn>5</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><mn>6</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>1</mn></mtd><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">16</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo mathvariant="bold">,</mo><mi mathvariant="bold">prove</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><msup><mi mathvariant="bold">A</mi><mn mathvariant="bold">3</mn></msup><mo mathvariant="bold">-</mo><mn mathvariant="bold">6</mn><msup><mi mathvariant="bold">A</mi><mn mathvariant="bold">2</mn></msup><mo mathvariant="bold">+</mo><mn mathvariant="bold">7</mn><mi mathvariant="bold">A</mi><mo mathvariant="bold">+</mo><mn mathvariant="bold">2</mn><mi mathvariant="bold">I</mi><mo mathvariant="bold">=</mo><mn mathvariant="bold">0</mn></math>
Solun:- Given equation is:- A3-6A2+7A+2I=0
(I is the identity matrix of order 3 because for addition same order matrix is required)
Calculate A3:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>4</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>2</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>6</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>4</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>9</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mi mathvariant="normal">A</mi><mo>=</mo><msup><mi mathvariant="normal">A</mi><mn>3</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>3</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>16</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>10</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>24</mn></mtd></mtr><mtr><mtd><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>10</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>8</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>4</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>15</mn></mtd></mtr><mtr><mtd><mn>8</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>26</mn></mtd><mtd><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd><mn>16</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>39</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>3</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>21</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>34</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>23</mn></mtd></mtr><mtr><mtd><mn>34</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>55</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/></math>
Put all the values in a given equation:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>21</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>34</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>23</mn></mtd></mtr><mtr><mtd><mn>34</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>55</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>-</mo><mn>6</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>5</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>8</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>13</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><mn>7</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><mo>=</mo><mi>O</mi></math>
L.H.S=R.H.S (Hence Proved…....)
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">17</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi>and</mi><mo>&#xA0;</mo><mi mathvariant="normal">I</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo>&#xA0;</mo><mi mathvariant="bold">find</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">k</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">so</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mo mathvariant="bold">&#xA0;</mo><msup><mi mathvariant="bold">A</mi><mn mathvariant="bold">2</mn></msup><mo mathvariant="bold">=</mo><mi mathvariant="bold">kA</mi><mo mathvariant="bold">-</mo><mn mathvariant="bold">2</mn><mi mathvariant="bold">I</mi></math>
Solun:- Given eq. is:- A2=kA-2I  Calculate A2:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>9</mn><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>6</mn><mo>+</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>12</mn><mo>-</mo><mn>8</mn></mtd><mtd><mo>-</mo><mn>8</mn><mo>+</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msup><mi mathvariant="normal">A</mi><mn>2</mn></msup><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Put values in given equation:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><mi>k</mi><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><mn>2</mn><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr><mtr><mtd><mn>4</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>-</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr><mtr><mtd><mn>4</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr><mtr><mtd><mn>4</mn><mi>k</mi></mtd><mtd><mo>-</mo><mn>2</mn><mi>k</mi></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>3</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>k</mi><mo>=</mo><mn>1</mn></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">18</mn><mo mathvariant="bold">.</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">If</mi><mo>&#xA0;</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mi mathvariant="bold">and</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">I</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">is</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">identity</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">matrix</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">of</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">order</mi><mo mathvariant="bold">&#xA0;</mo><mn mathvariant="bold">2</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">show</mi><mo mathvariant="bold">&#xA0;</mo><mi mathvariant="bold">that</mi><mspace linebreak="newline"/><mi mathvariant="normal">I</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>=</mo><mfenced><mrow><mi mathvariant="normal">I</mi><mo>-</mo><mi mathvariant="normal">A</mi></mrow></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mi>cos&#x3B1;</mi></mtd><mtd><mo>-</mo><mi>sin&#x3B1;</mi></mtd></mtr><mtr><mtd><mi>sin&#x3B1;</mi></mtd><mtd><mi>cos&#x3B1;</mi></mtd></mtr></mtable></mfenced></math>
Solun:- Taking L.H.S:- I+A
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi mathvariant="normal">I</mi><mo>+</mo><mi mathvariant="normal">A</mi><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>tan</mi><mfrac><mi mathvariant="normal">&#x3B1;</mi><mn>2</mn></mfrac></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
So, L.H.S = R.H.S (Hence Proved…....)
19. A trust fund has 30,000 Rs that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide 30,000 Rs among the two types of bonds. If the trust fund must obtain an annual total interest of:
(A) Rs 1800
(B) Rs 2000
Solun:- Given funds must be invested in two types of bonds.
Let the first bond is=x
Second bond is=30000-x
Investment is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mi>x</mi></mtd><mtd><mfenced><mrow><mn>30000</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>2</mn></mrow></msub></math>
Rate is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>07</mn></mtd></mtr></mtable></mfenced><mrow><mn>2</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub></math>
(i) Obtain total annual interest is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>x</mi></mtd><mtd><mn>30000</mn><mo>-</mo><mi>x</mi></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>07</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>1800</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn><mo>&#xD7;</mo><mi>x</mi><mo>+</mo><mfenced><mrow><mn>30000</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>&#xD7;</mo><mn>0</mn><mo>.</mo><mn>07</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1800</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>&#xD7;</mo><mi>x</mi><mo>+</mo><mn>2100</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>07</mn><mo>&#xD7;</mo><mi>x</mi><mo>=</mo><mn>1800</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>&#xD7;</mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>300</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>x</mi><mo>=</mo><mfrac><mn>300</mn><mrow><mn>0</mn><mo>.</mo><mn>02</mn></mrow></mfrac><mo>=</mo><mn>15000</mn></math>
So the first investment is Rs 15000 and the second investment is 30000-15000=Rs 15000.
(ii) Obtain total annual interest is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mi>x</mi></mtd><mtd><mn>30000</mn><mo>-</mo><mi>x</mi></mtd></mtr></mtable></mfenced><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>07</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>2000</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mfenced open="[" close="]"><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>05</mn><mo>&#xD7;</mo><mi>x</mi><mo>+</mo><mfenced><mrow><mn>30000</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>&#xD7;</mo><mn>0</mn><mo>.</mo><mn>07</mn></mtd></mtr></mtable></mfenced><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>2000</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mn>0</mn><mo>.</mo><mn>05</mn><mo>&#xD7;</mo><mi>x</mi><mo>+</mo><mn>2100</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>07</mn><mo>&#xD7;</mo><mi>x</mi><mo>=</mo><mn>2000</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>&#xD7;</mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>100</mn><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#xA0;</mo><mi>x</mi><mo>=</mo><mfrac><mn>100</mn><mrow><mn>0</mn><mo>.</mo><mn>02</mn></mrow></mfrac><mo>=</mo><mn>5000</mn></math>
So the first investment is Rs 5000 and the second investment is 30000-5000=Rs 25000.
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are 80 Rs, 60 Rs and 40 Rs each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Solun:- Chemistry books=10 dozen =10x12=120
Physics books=8 dozen =8x12=96
Economics books=10 dozen =10x12=120
Total amount the bookshop is:-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>120</mn></mtd><mtd><mn>96</mn></mtd><mtd><mn>120</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>3</mn></mrow></msub><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>80</mn></mtd></mtr><mtr><mtd><mn>60</mn></mtd></mtr><mtr><mtd><mn>40</mn></mtd></mtr></mtable></mfenced><mrow><mn>3</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>120</mn><mo>&#xD7;</mo><mn>80</mn><mo>+</mo><mn>96</mn><mo>&#xD7;</mo><mn>60</mn><mo>+</mo><mn>120</mn><mo>&#xD7;</mo><mn>40</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/><mo>=</mo><mo>&#xA0;</mo><msub><mfenced open="[" close="]"><mtable><mtr><mtd><mn>20160</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn><mo>&#xD7;</mo><mn>1</mn></mrow></msub><mspace linebreak="newline"/></math>
=Rs 20160
Assume X, Y, Z, W, and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.
21. The restriction on n, k, and p so that PY + WY will be defined are:
(A) k=3,p=n
(B) k is arbitrary, p=2
(C) p is arbitrary, k=3
(D) k=2,p=3
Solun:- Given PY+WY=Y(P+W)
For the addition of P and W:-P and W should have the same order.
That is:- pxk=nx3
So n=p and k=3  (Comparing both sides)
For multiplication of Y(P+W)
No. of columns of Y=No. of rows of P+W
⇒ k=n=p=3
So the answer is A.
22. If n = p, then the order of the matrix 7X – 5Z is:
(A) px2
(B) 2xn
(C) nx3
(D) pxn
Solun:- Order of X is=2xn
And the order of Z is=2xp=2xn  (Given n=p)
Order of 7X-5Z =2xn. (Because result matrix has same order that has X and Z)
The Answer is……B




If you have any queries, you can ask me in the comment section And you can follow/subscribe me for the latest updates on your e-mails For subscribing me follow these instructions:- 1. Fill your E-mail address 2. Submit Recaptcha 3. Go to your email and then click on the verify link Then you get all update on your email Thanks for Reading ......

Post a Comment

Comment me for any queries or topic which you want to learn

Previous Post Next Post